J. Cierniewski, J. Ceglarek, A. Karnieli, Sławomir Królewicz, Cezary Kaźmierowski, Bogdan Zagajewski
{"title":"利用实验室土壤高光谱反射率数据预测其日反照率动态以适应其粗糙度","authors":"J. Cierniewski, J. Ceglarek, A. Karnieli, Sławomir Królewicz, Cezary Kaźmierowski, Bogdan Zagajewski","doi":"10.1109/WHISPERS.2016.8071743","DOIUrl":null,"url":null,"abstract":"The objective of this study was to assess the relationship between the hyperspectral reflectance of soils and its albedo, measured under various roughness conditions. 108 soil surfaces measurements were conducted in Poland and Israel. Each surface was characterized by its diurnal albedo variation in the field as well as its reflectance spectra that was obtained in the laboratory. The best fit to the model was achieved by postprocessing manipulation of the spectra, namely second derivate transformation. Using stepwise elimination process, four spectral wavelengths, as well as roughness index, were selected for modeling. The resulted models allow predicting the albedo of a soil at specific roughness for any solar zenithal angle, provided that hyperspectral reflectance data is available.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of laboratory hyperspectral reflectance data of soils for predicting their diurnal albedo dynamics accomodating their roughness\",\"authors\":\"J. Cierniewski, J. Ceglarek, A. Karnieli, Sławomir Królewicz, Cezary Kaźmierowski, Bogdan Zagajewski\",\"doi\":\"10.1109/WHISPERS.2016.8071743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study was to assess the relationship between the hyperspectral reflectance of soils and its albedo, measured under various roughness conditions. 108 soil surfaces measurements were conducted in Poland and Israel. Each surface was characterized by its diurnal albedo variation in the field as well as its reflectance spectra that was obtained in the laboratory. The best fit to the model was achieved by postprocessing manipulation of the spectra, namely second derivate transformation. Using stepwise elimination process, four spectral wavelengths, as well as roughness index, were selected for modeling. The resulted models allow predicting the albedo of a soil at specific roughness for any solar zenithal angle, provided that hyperspectral reflectance data is available.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of laboratory hyperspectral reflectance data of soils for predicting their diurnal albedo dynamics accomodating their roughness
The objective of this study was to assess the relationship between the hyperspectral reflectance of soils and its albedo, measured under various roughness conditions. 108 soil surfaces measurements were conducted in Poland and Israel. Each surface was characterized by its diurnal albedo variation in the field as well as its reflectance spectra that was obtained in the laboratory. The best fit to the model was achieved by postprocessing manipulation of the spectra, namely second derivate transformation. Using stepwise elimination process, four spectral wavelengths, as well as roughness index, were selected for modeling. The resulted models allow predicting the albedo of a soil at specific roughness for any solar zenithal angle, provided that hyperspectral reflectance data is available.