绝热量子计算有多强大?

W. V. Dam, M. Mosca, U. Vazirani
{"title":"绝热量子计算有多强大?","authors":"W. V. Dam, M. Mosca, U. Vazirani","doi":"10.1109/SFCS.2001.959902","DOIUrl":null,"url":null,"abstract":"The authors analyze the computational power and limitations of the recently proposed 'quantum adiabatic evolution algorithm'. Adiabatic quantum computation is a novel paradigm for the design of quantum algorithms; it is truly quantum in the sense that it can be used to speed up searching by a quadratic factor over any classical algorithm. On the question of whether this new paradigm may be used to efficiently solve NP-complete problems on a quantum computer, we show that the usual query complexity arguments cannot be used to rule out a polynomial time solution. On the other hand, we argue that the adiabatic approach may be thought of as a kind of 'quantum local search'. We design a family of minimization problems that is hard for such local search heuristics, and establish an exponential lower bound for the adiabatic algorithm for these problems. This provides insights into the limitations of this approach. It remains an open question whether adiabatic quantum computation can establish an exponential speed-up over traditional computing or if there exists a classical algorithm that can simulate the quantum adiabatic process efficiently.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"290","resultStr":"{\"title\":\"How powerful is adiabatic quantum computation?\",\"authors\":\"W. V. Dam, M. Mosca, U. Vazirani\",\"doi\":\"10.1109/SFCS.2001.959902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors analyze the computational power and limitations of the recently proposed 'quantum adiabatic evolution algorithm'. Adiabatic quantum computation is a novel paradigm for the design of quantum algorithms; it is truly quantum in the sense that it can be used to speed up searching by a quadratic factor over any classical algorithm. On the question of whether this new paradigm may be used to efficiently solve NP-complete problems on a quantum computer, we show that the usual query complexity arguments cannot be used to rule out a polynomial time solution. On the other hand, we argue that the adiabatic approach may be thought of as a kind of 'quantum local search'. We design a family of minimization problems that is hard for such local search heuristics, and establish an exponential lower bound for the adiabatic algorithm for these problems. This provides insights into the limitations of this approach. It remains an open question whether adiabatic quantum computation can establish an exponential speed-up over traditional computing or if there exists a classical algorithm that can simulate the quantum adiabatic process efficiently.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"290\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 290

摘要

作者分析了最近提出的“量子绝热进化算法”的计算能力和局限性。绝热量子计算是一种新的量子算法设计范式;在某种意义上,它是真正的量子,它可以用来加速搜索,通过二次因子比任何经典算法。关于这种新范式是否可以用于有效地解决量子计算机上的np完全问题的问题,我们表明,通常的查询复杂性参数不能用于排除多项式时间解。另一方面,我们认为绝热方法可以被认为是一种“量子局部搜索”。我们设计了一类局部搜索启发式算法难以解决的最小化问题,并为这些问题的绝热算法建立了指数下界。这提供了对这种方法的局限性的见解。绝热量子计算是否能够比传统计算建立指数级的加速,或者是否存在一种经典算法可以有效地模拟量子绝热过程,仍然是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How powerful is adiabatic quantum computation?
The authors analyze the computational power and limitations of the recently proposed 'quantum adiabatic evolution algorithm'. Adiabatic quantum computation is a novel paradigm for the design of quantum algorithms; it is truly quantum in the sense that it can be used to speed up searching by a quadratic factor over any classical algorithm. On the question of whether this new paradigm may be used to efficiently solve NP-complete problems on a quantum computer, we show that the usual query complexity arguments cannot be used to rule out a polynomial time solution. On the other hand, we argue that the adiabatic approach may be thought of as a kind of 'quantum local search'. We design a family of minimization problems that is hard for such local search heuristics, and establish an exponential lower bound for the adiabatic algorithm for these problems. This provides insights into the limitations of this approach. It remains an open question whether adiabatic quantum computation can establish an exponential speed-up over traditional computing or if there exists a classical algorithm that can simulate the quantum adiabatic process efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信