多密度复杂形状数据集的半监督聚类算法

Yangqiang Yu, Tian-qiang Huang, Gong-de Guo, Kai Li
{"title":"多密度复杂形状数据集的半监督聚类算法","authors":"Yangqiang Yu, Tian-qiang Huang, Gong-de Guo, Kai Li","doi":"10.1109/CCPR.2008.15","DOIUrl":null,"url":null,"abstract":"There are many complicated data in real world, clustering analysis should be able to find the clusters of different shapes and densities. The existing typical clustering algorithms do not perform well on multi-density data. A semi-supervised clustering algorithm for multi-density dataset SCMD is proposed. The pairwise constraints: must-link and cannot-link that reflect the distribution of multi-density dataset are used. Experimental results show the algorithm can identify the clusters of varying shapes, sizes, and densities, even in the presence of noise and outliers. It is more efficient than SNN and DBSCAN.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Semi-Supervised Clustering Algorithm for Multi-Density and Complex Shape Dataset\",\"authors\":\"Yangqiang Yu, Tian-qiang Huang, Gong-de Guo, Kai Li\",\"doi\":\"10.1109/CCPR.2008.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many complicated data in real world, clustering analysis should be able to find the clusters of different shapes and densities. The existing typical clustering algorithms do not perform well on multi-density data. A semi-supervised clustering algorithm for multi-density dataset SCMD is proposed. The pairwise constraints: must-link and cannot-link that reflect the distribution of multi-density dataset are used. Experimental results show the algorithm can identify the clusters of varying shapes, sizes, and densities, even in the presence of noise and outliers. It is more efficient than SNN and DBSCAN.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现实世界中有许多复杂的数据,聚类分析应该能够找到不同形状和密度的聚类。现有的典型聚类算法在多密度数据上表现不佳。提出了一种多密度数据集SCMD的半监督聚类算法。使用了反映多密度数据集分布的“必须链接”和“不能链接”成对约束。实验结果表明,即使存在噪声和异常值,该算法也能识别出不同形状、大小和密度的聚类。它比SNN和DBSCAN更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Clustering Algorithm for Multi-Density and Complex Shape Dataset
There are many complicated data in real world, clustering analysis should be able to find the clusters of different shapes and densities. The existing typical clustering algorithms do not perform well on multi-density data. A semi-supervised clustering algorithm for multi-density dataset SCMD is proposed. The pairwise constraints: must-link and cannot-link that reflect the distribution of multi-density dataset are used. Experimental results show the algorithm can identify the clusters of varying shapes, sizes, and densities, even in the presence of noise and outliers. It is more efficient than SNN and DBSCAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信