优先考虑Twitter用户反馈:一份调查报告

Emitzá Guzmán, M. Ibrahim, M. Glinz
{"title":"优先考虑Twitter用户反馈:一份调查报告","authors":"Emitzá Guzmán, M. Ibrahim, M. Glinz","doi":"10.1109/CSI-SE.2017.4","DOIUrl":null,"url":null,"abstract":"Twitter messages (tweets) contain important information for software and requirements evolution, such as feature requests, bug reports and feature shortcoming descriptions. For this reason, Twitter is an important source for crowd-based requirements engineering and software evolution. However, a manual analysis of this information is unfeasible due to the large number of tweets, its unstructured nature and varying quality. Therefore, automatic analysis techniques are needed for, e.g., summarizing, classifying and prioritizing tweets. In this work we present a survey with 84 software engineering practitioners and researchers that studies the tweet attributes that are most telling of tweet priority when performing software evolution tasks. We believe that our results can be used to implement mechanisms for prioritizing user feedback with social components. Thus, it can be helpful for enhancing crowd-based requirements engineering and software evolution.","PeriodicalId":431605,"journal":{"name":"2017 IEEE/ACM 4th International Workshop on CrowdSourcing in Software Engineering (CSI-SE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Prioritizing User Feedback from Twitter: A Survey Report\",\"authors\":\"Emitzá Guzmán, M. Ibrahim, M. Glinz\",\"doi\":\"10.1109/CSI-SE.2017.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter messages (tweets) contain important information for software and requirements evolution, such as feature requests, bug reports and feature shortcoming descriptions. For this reason, Twitter is an important source for crowd-based requirements engineering and software evolution. However, a manual analysis of this information is unfeasible due to the large number of tweets, its unstructured nature and varying quality. Therefore, automatic analysis techniques are needed for, e.g., summarizing, classifying and prioritizing tweets. In this work we present a survey with 84 software engineering practitioners and researchers that studies the tweet attributes that are most telling of tweet priority when performing software evolution tasks. We believe that our results can be used to implement mechanisms for prioritizing user feedback with social components. Thus, it can be helpful for enhancing crowd-based requirements engineering and software evolution.\",\"PeriodicalId\":431605,\"journal\":{\"name\":\"2017 IEEE/ACM 4th International Workshop on CrowdSourcing in Software Engineering (CSI-SE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 4th International Workshop on CrowdSourcing in Software Engineering (CSI-SE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSI-SE.2017.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 4th International Workshop on CrowdSourcing in Software Engineering (CSI-SE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSI-SE.2017.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

Twitter消息(tweets)包含了软件和需求发展的重要信息,比如特性请求、bug报告和特性缺点描述。出于这个原因,Twitter是基于人群的需求工程和软件发展的重要来源。然而,由于大量的推文,其非结构化的性质和不同的质量,对这些信息进行人工分析是不可行的。因此,需要自动分析技术,例如对tweets进行汇总、分类和优先级排序。在这项工作中,我们对84名软件工程从业者和研究人员进行了调查,研究了在执行软件进化任务时最能说明推文优先级的推文属性。我们相信,我们的研究结果可以用于实现带有社交组件的用户反馈优先级机制。因此,它可以帮助增强基于人群的需求工程和软件发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritizing User Feedback from Twitter: A Survey Report
Twitter messages (tweets) contain important information for software and requirements evolution, such as feature requests, bug reports and feature shortcoming descriptions. For this reason, Twitter is an important source for crowd-based requirements engineering and software evolution. However, a manual analysis of this information is unfeasible due to the large number of tweets, its unstructured nature and varying quality. Therefore, automatic analysis techniques are needed for, e.g., summarizing, classifying and prioritizing tweets. In this work we present a survey with 84 software engineering practitioners and researchers that studies the tweet attributes that are most telling of tweet priority when performing software evolution tasks. We believe that our results can be used to implement mechanisms for prioritizing user feedback with social components. Thus, it can be helpful for enhancing crowd-based requirements engineering and software evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信