自动发现循环程序的非线性排序函数

Yi Li
{"title":"自动发现循环程序的非线性排序函数","authors":"Yi Li","doi":"10.1109/ICCSIT.2009.5234919","DOIUrl":null,"url":null,"abstract":"We present a method for the synthesis of non-linear ranking function of a program loop. Based on the region-based search, it reduces the non-linear ranking function discovering to the inequality checking. The inequality prover BOTTEMA then can be utilized to check validity for inequalities. In contrast to other approaches, the new approach can also discover the ranking function with the radicals due to BOTTEMA's distinct features. Several interesting examples are given to illustrate our technique.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"13 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic discovery of non-linear ranking functions of loop programs\",\"authors\":\"Yi Li\",\"doi\":\"10.1109/ICCSIT.2009.5234919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for the synthesis of non-linear ranking function of a program loop. Based on the region-based search, it reduces the non-linear ranking function discovering to the inequality checking. The inequality prover BOTTEMA then can be utilized to check validity for inequalities. In contrast to other approaches, the new approach can also discover the ranking function with the radicals due to BOTTEMA's distinct features. Several interesting examples are given to illustrate our technique.\",\"PeriodicalId\":342396,\"journal\":{\"name\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"volume\":\"13 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIT.2009.5234919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种程序循环非线性排序函数的综合方法。在基于区域搜索的基础上,将非线性排序函数发现简化为不等式检查。不等式证明器BOTTEMA可以用来检验不等式的有效性。与其他方法相比,由于BOTTEMA的独特特性,新方法还可以发现带有根号的排序函数。给出了几个有趣的例子来说明我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic discovery of non-linear ranking functions of loop programs
We present a method for the synthesis of non-linear ranking function of a program loop. Based on the region-based search, it reduces the non-linear ranking function discovering to the inequality checking. The inequality prover BOTTEMA then can be utilized to check validity for inequalities. In contrast to other approaches, the new approach can also discover the ranking function with the radicals due to BOTTEMA's distinct features. Several interesting examples are given to illustrate our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信