{"title":"超驱动x线传车辆动力学传感器和致动器的故障检测与隔离","authors":"L. M. Ho, D. Ossmann","doi":"10.1109/CDC.2014.7040418","DOIUrl":null,"url":null,"abstract":"Model-based fault detection and isolation (FDI) for an overactuated mechatronic vehicle is presented. The linear single-track model is extend to reflect the layout of the overactuated vehicle as well as its longitudinal dynamics, and sensor and actuator faults are added into the model. The DLR Fault Detection Toolbox, which makes use of rational nullspace bases computation to design residual generators, is used for the systematic design of structured residuals. A minimum set of residuals is selected according to their robustness and ability to isolate faults. The fault detection and isolation system is validated in a simulation in connection with a double track model using the parameters of the ROboMObil prototype vehicle.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"520 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fault detection and isolation of vehicle dynamics sensors and actuators for an overactuated X-by-wire vehicle\",\"authors\":\"L. M. Ho, D. Ossmann\",\"doi\":\"10.1109/CDC.2014.7040418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based fault detection and isolation (FDI) for an overactuated mechatronic vehicle is presented. The linear single-track model is extend to reflect the layout of the overactuated vehicle as well as its longitudinal dynamics, and sensor and actuator faults are added into the model. The DLR Fault Detection Toolbox, which makes use of rational nullspace bases computation to design residual generators, is used for the systematic design of structured residuals. A minimum set of residuals is selected according to their robustness and ability to isolate faults. The fault detection and isolation system is validated in a simulation in connection with a double track model using the parameters of the ROboMObil prototype vehicle.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"520 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7040418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault detection and isolation of vehicle dynamics sensors and actuators for an overactuated X-by-wire vehicle
Model-based fault detection and isolation (FDI) for an overactuated mechatronic vehicle is presented. The linear single-track model is extend to reflect the layout of the overactuated vehicle as well as its longitudinal dynamics, and sensor and actuator faults are added into the model. The DLR Fault Detection Toolbox, which makes use of rational nullspace bases computation to design residual generators, is used for the systematic design of structured residuals. A minimum set of residuals is selected according to their robustness and ability to isolate faults. The fault detection and isolation system is validated in a simulation in connection with a double track model using the parameters of the ROboMObil prototype vehicle.