{"title":"影响排序索引的任何时间排序","authors":"Jimmy J. Lin, A. Trotman","doi":"10.1145/2808194.2809477","DOIUrl":null,"url":null,"abstract":"The ability for a ranking function to control its own execution time is useful for managing load, reigning in outliers, and adapting to different types of queries. We propose a simple yet effective anytime algorithm for impact-ordered indexes that builds on a score-at-a-time query evaluation strategy. In our approach, postings segments are processed in decreasing order of their impact scores, and the algorithm early terminates when a specified number of postings have been processed. With a simple linear model and a few training topics, we can determine this threshold given a time budget in milliseconds. Experiments on two web test collections show that our approach can accurately control query evaluation latency and that aggressive limits on execution time lead to minimal decreases in effectiveness.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Anytime Ranking for Impact-Ordered Indexes\",\"authors\":\"Jimmy J. Lin, A. Trotman\",\"doi\":\"10.1145/2808194.2809477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability for a ranking function to control its own execution time is useful for managing load, reigning in outliers, and adapting to different types of queries. We propose a simple yet effective anytime algorithm for impact-ordered indexes that builds on a score-at-a-time query evaluation strategy. In our approach, postings segments are processed in decreasing order of their impact scores, and the algorithm early terminates when a specified number of postings have been processed. With a simple linear model and a few training topics, we can determine this threshold given a time budget in milliseconds. Experiments on two web test collections show that our approach can accurately control query evaluation latency and that aggressive limits on execution time lead to minimal decreases in effectiveness.\",\"PeriodicalId\":440325,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808194.2809477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ability for a ranking function to control its own execution time is useful for managing load, reigning in outliers, and adapting to different types of queries. We propose a simple yet effective anytime algorithm for impact-ordered indexes that builds on a score-at-a-time query evaluation strategy. In our approach, postings segments are processed in decreasing order of their impact scores, and the algorithm early terminates when a specified number of postings have been processed. With a simple linear model and a few training topics, we can determine this threshold given a time budget in milliseconds. Experiments on two web test collections show that our approach can accurately control query evaluation latency and that aggressive limits on execution time lead to minimal decreases in effectiveness.