时变时滞复值神经网络的拉格朗日稳定性

Zhengwen Tu, Jinde Cao
{"title":"时变时滞复值神经网络的拉格朗日稳定性","authors":"Zhengwen Tu, Jinde Cao","doi":"10.1109/ICACI.2016.7449850","DOIUrl":null,"url":null,"abstract":"In this paper, the Lagrange stability of complex-valued neural networks(CVNNs) with time-varying delays is considered. By employing matrix measure approach and generalized Halanay inequality, several sufficient criteria are derived to ascertain the global Lagrange stability for the addressed neural networks. Meanwhile, the globally exponentially attractive sets are exhibited. Finally, two numerical examples are presented to verify our theoretical results.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrange stability of complex-valued neural networks with time-varying delays\",\"authors\":\"Zhengwen Tu, Jinde Cao\",\"doi\":\"10.1109/ICACI.2016.7449850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Lagrange stability of complex-valued neural networks(CVNNs) with time-varying delays is considered. By employing matrix measure approach and generalized Halanay inequality, several sufficient criteria are derived to ascertain the global Lagrange stability for the addressed neural networks. Meanwhile, the globally exponentially attractive sets are exhibited. Finally, two numerical examples are presented to verify our theoretical results.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了时变时滞复值神经网络的拉格朗日稳定性问题。利用矩阵测度方法和广义Halanay不等式,导出了确定神经网络全局拉格朗日稳定性的几个充分准则。同时,给出了全局指数吸引集。最后,给出了两个数值算例来验证我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrange stability of complex-valued neural networks with time-varying delays
In this paper, the Lagrange stability of complex-valued neural networks(CVNNs) with time-varying delays is considered. By employing matrix measure approach and generalized Halanay inequality, several sufficient criteria are derived to ascertain the global Lagrange stability for the addressed neural networks. Meanwhile, the globally exponentially attractive sets are exhibited. Finally, two numerical examples are presented to verify our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信