Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang
{"title":"基于受限玻尔兹曼机的双导联心电图分类","authors":"Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang","doi":"10.1109/BSN.2015.7299399","DOIUrl":null,"url":null,"abstract":"An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A restricted Boltzmann machine based two-lead electrocardiography classification\",\"authors\":\"Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang\",\"doi\":\"10.1109/BSN.2015.7299399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A restricted Boltzmann machine based two-lead electrocardiography classification
An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.