基于受限玻尔兹曼机的双导联心电图分类

Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang
{"title":"基于受限玻尔兹曼机的双导联心电图分类","authors":"Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang","doi":"10.1109/BSN.2015.7299399","DOIUrl":null,"url":null,"abstract":"An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A restricted Boltzmann machine based two-lead electrocardiography classification\",\"authors\":\"Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang\",\"doi\":\"10.1109/BSN.2015.7299399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

针对双导联心跳分类问题,提出了一种受限玻尔兹曼机器学习算法。心电分类是一个复杂的模式识别问题。受限玻尔兹曼机的无监督学习算法是挖掘心脏健康监测应用中收集的大量无标记心电波的理想方法。受限玻尔兹曼机(RBM)是一种生成式随机人工神经网络,能够学习其输入集上的概率分布。本文构造了一个深度信念网络,并将基于RBM的算法应用于分类问题。在ANSI/AAMI EC57: 1998/(R)2008标准推荐的12类波形标签下,在MIT-BIH双导联心电数据集上对该算法进行了评价,准确率达到98.829%。该算法在双导联心电分类问题中表现良好,可推广到多导联无监督心电分类或检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A restricted Boltzmann machine based two-lead electrocardiography classification
An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信