NVMe固态硬盘模糊公平性控制器

S. Tripathy, Debiprasanna Sahoo, M. Satpathy, M. Mutyam
{"title":"NVMe固态硬盘模糊公平性控制器","authors":"S. Tripathy, Debiprasanna Sahoo, M. Satpathy, M. Mutyam","doi":"10.1145/3392717.3392766","DOIUrl":null,"url":null,"abstract":"Modern NVMe SSDs are widely deployed in diverse domains due to characteristics like high performance, robustness, and energy efficiency. It has been observed that the impact of interference among the concurrently running workloads on their overall response time differs significantly in these devices, which leads to unfairness. Workload intensity is a dominant factor influencing the interference. Prior works use a threshold value to characterize a workload as high-intensity or low-intensity; this type of characterization has drawbacks due to lack of information about the degree of low- or high-intensity. A data cache in an SSD controller - usually based on DRAMs - plays a crucial role in improving device throughput and lifetime. However, the degree of parallelism is limited at this level compared to the SSD back-end consisting of several channels, chips, and planes. Therefore, the impact of interference can be more pronounced at the data cache level. No prior work has addressed the fairness issue at the data cache level to the best of our knowledge. In this work, we address this issue by proposing a fuzzy logic-based fairness control mechanism. A fuzzy fairness controller characterizes the degree of flow intensity (i.e., the rate at which requests are generated) of a workload and assigns priorities to the workloads. We implement the proposed mechanism in the MQSim framework and observe that our technique improves the fairness, weighted speedup, and harmonic speedup of SSD by 29.84%, 11.24%, and 24.90% on average over state of the art, respectively. The peak gains in fairness, weighted speedup, and harmonic speedup are 2.02x, 29.44%, and 56.30%, respectively.","PeriodicalId":346687,"journal":{"name":"Proceedings of the 34th ACM International Conference on Supercomputing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fuzzy fairness controller for NVMe SSDs\",\"authors\":\"S. Tripathy, Debiprasanna Sahoo, M. Satpathy, M. Mutyam\",\"doi\":\"10.1145/3392717.3392766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern NVMe SSDs are widely deployed in diverse domains due to characteristics like high performance, robustness, and energy efficiency. It has been observed that the impact of interference among the concurrently running workloads on their overall response time differs significantly in these devices, which leads to unfairness. Workload intensity is a dominant factor influencing the interference. Prior works use a threshold value to characterize a workload as high-intensity or low-intensity; this type of characterization has drawbacks due to lack of information about the degree of low- or high-intensity. A data cache in an SSD controller - usually based on DRAMs - plays a crucial role in improving device throughput and lifetime. However, the degree of parallelism is limited at this level compared to the SSD back-end consisting of several channels, chips, and planes. Therefore, the impact of interference can be more pronounced at the data cache level. No prior work has addressed the fairness issue at the data cache level to the best of our knowledge. In this work, we address this issue by proposing a fuzzy logic-based fairness control mechanism. A fuzzy fairness controller characterizes the degree of flow intensity (i.e., the rate at which requests are generated) of a workload and assigns priorities to the workloads. We implement the proposed mechanism in the MQSim framework and observe that our technique improves the fairness, weighted speedup, and harmonic speedup of SSD by 29.84%, 11.24%, and 24.90% on average over state of the art, respectively. The peak gains in fairness, weighted speedup, and harmonic speedup are 2.02x, 29.44%, and 56.30%, respectively.\",\"PeriodicalId\":346687,\"journal\":{\"name\":\"Proceedings of the 34th ACM International Conference on Supercomputing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3392717.3392766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3392717.3392766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

现代NVMe固态硬盘由于其高性能、鲁棒性和能效等特点被广泛应用于各个领域。已经观察到,在这些设备中并发运行的工作负载之间的干扰对其总体响应时间的影响差异很大,这导致了不公平。工作强度是影响干扰的主要因素。先前的研究使用一个阈值来描述工作负荷是高强度还是低强度;由于缺乏关于低强度或高强度程度的信息,这种类型的表征存在缺陷。SSD控制器中的数据缓存(通常基于dram)在提高设备吞吐量和寿命方面起着至关重要的作用。然而,与由多个通道、芯片和平面组成的SSD后端相比,这个级别的并行度是有限的。因此,干扰的影响在数据缓存级别会更加明显。据我们所知,之前没有工作解决数据缓存级别的公平性问题。在这项工作中,我们提出了一个基于模糊逻辑的公平控制机制来解决这个问题。模糊公平性控制器表征工作负载的流强度程度(即生成请求的速率),并为工作负载分配优先级。我们在MQSim框架中实现了所提出的机制,并观察到我们的技术将SSD的公平性、加权加速和谐波加速平均分别提高了29.84%、11.24%和24.90%。公平性、加权加速和谐波加速的峰值增益分别为2.02x、29.44%和56.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy fairness controller for NVMe SSDs
Modern NVMe SSDs are widely deployed in diverse domains due to characteristics like high performance, robustness, and energy efficiency. It has been observed that the impact of interference among the concurrently running workloads on their overall response time differs significantly in these devices, which leads to unfairness. Workload intensity is a dominant factor influencing the interference. Prior works use a threshold value to characterize a workload as high-intensity or low-intensity; this type of characterization has drawbacks due to lack of information about the degree of low- or high-intensity. A data cache in an SSD controller - usually based on DRAMs - plays a crucial role in improving device throughput and lifetime. However, the degree of parallelism is limited at this level compared to the SSD back-end consisting of several channels, chips, and planes. Therefore, the impact of interference can be more pronounced at the data cache level. No prior work has addressed the fairness issue at the data cache level to the best of our knowledge. In this work, we address this issue by proposing a fuzzy logic-based fairness control mechanism. A fuzzy fairness controller characterizes the degree of flow intensity (i.e., the rate at which requests are generated) of a workload and assigns priorities to the workloads. We implement the proposed mechanism in the MQSim framework and observe that our technique improves the fairness, weighted speedup, and harmonic speedup of SSD by 29.84%, 11.24%, and 24.90% on average over state of the art, respectively. The peak gains in fairness, weighted speedup, and harmonic speedup are 2.02x, 29.44%, and 56.30%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信