ram上数据结构问题的下界

Amir M. Ben-Amram, Z. Galil
{"title":"ram上数据结构问题的下界","authors":"Amir M. Ben-Amram, Z. Galil","doi":"10.1109/SFCS.1991.185428","DOIUrl":null,"url":null,"abstract":"A technique is described for deriving lower bounds and tradeoffs for data structure problems. Two quantities are defined. The output variability depends only on the model of computation. It characterizes in some sense the power of a model. The problem variability depends only on the problem under consideration. It characterizes in some sense the difficulty of the problem. The first theorem states that if a model's output variability is smaller than the problem variability, a lower bound on the worst case (average case) time for the problem follows. A RAM that can add, subtract and compare unbounded integers is considered. The second theorem gives an upper bound on the output variability of this model. The two theorems are used to derive lower bounds for the union-find problem in this RAM.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Lower bounds for data structure problems on RAMs\",\"authors\":\"Amir M. Ben-Amram, Z. Galil\",\"doi\":\"10.1109/SFCS.1991.185428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique is described for deriving lower bounds and tradeoffs for data structure problems. Two quantities are defined. The output variability depends only on the model of computation. It characterizes in some sense the power of a model. The problem variability depends only on the problem under consideration. It characterizes in some sense the difficulty of the problem. The first theorem states that if a model's output variability is smaller than the problem variability, a lower bound on the worst case (average case) time for the problem follows. A RAM that can add, subtract and compare unbounded integers is considered. The second theorem gives an upper bound on the output variability of this model. The two theorems are used to derive lower bounds for the union-find problem in this RAM.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

描述了一种用于导出数据结构问题的下界和权衡的技术。定义了两个量。输出变异性仅取决于计算模型。它在某种意义上表征了模型的力量。问题的可变性仅取决于所考虑的问题。它在某种意义上说明了问题的难度。第一个定理指出,如果模型的输出可变性小于问题的可变性,那么问题的最坏情况(平均情况)时间的下界就会出现。考虑一个可以加减和比较无界整数的RAM。第二个定理给出了该模型输出可变性的上界。用这两个定理推导了该RAM中并查找问题的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for data structure problems on RAMs
A technique is described for deriving lower bounds and tradeoffs for data structure problems. Two quantities are defined. The output variability depends only on the model of computation. It characterizes in some sense the power of a model. The problem variability depends only on the problem under consideration. It characterizes in some sense the difficulty of the problem. The first theorem states that if a model's output variability is smaller than the problem variability, a lower bound on the worst case (average case) time for the problem follows. A RAM that can add, subtract and compare unbounded integers is considered. The second theorem gives an upper bound on the output variability of this model. The two theorems are used to derive lower bounds for the union-find problem in this RAM.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信