{"title":"氧化锌纳米三脚架","authors":"S. Mahmud, M. Abdullah","doi":"10.1109/NANOEL.2006.1609767","DOIUrl":null,"url":null,"abstract":"We report the discovery of two-dimensional (2-D) nanotripods of ZnO, a new member of the ZnO nanostructure family. These planar nanotripods are synthesized via a novel approach known as catalyst-free combust-oxidized mesh (CFCOM) process that we developed using a ZnO factory furnace. At about 1200 °C, high velocity zinc vapor is instantly oxidized and captured in a steel mesh for 20s and then air-quenched. From this subminute synthesis process, three types of polycrystalline 2-D tripodal nanostructures are discovered. The ZnO tripods are composed of three planar arms that appear as rectangular nanoplates. We propose two growth routes for these planar tripods, namely base-arm and tripodal-core routes. For the former route, growth begins with the base arm in [[unk] [unk] 20 ] direction. During quenching, the other two arms grow from newly formed tapered facets, ([unk]110) and (1[unk]10). The tripodal-core growth route involves the formation of a hexagonal disc with ±( 0002 ) larger surfaces. From this core, three arms grow simultaneously in [ 11[unk]0 ], [ [unk]10 ] and [ 1[unk]10 ] directions, while the core transforms into a Y-shaped configuration with ±( 10[unk]0), ±( 01[unk]0 ) and ±( [unk]100 ) planes. Morphological analyses are performed using FESEM, EDS, TEM and XRD. Photoluminescence test detects the presence of structural defects associated with green and red peak emissions.","PeriodicalId":220722,"journal":{"name":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Nanotripods of Zinc Oxide\",\"authors\":\"S. Mahmud, M. Abdullah\",\"doi\":\"10.1109/NANOEL.2006.1609767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the discovery of two-dimensional (2-D) nanotripods of ZnO, a new member of the ZnO nanostructure family. These planar nanotripods are synthesized via a novel approach known as catalyst-free combust-oxidized mesh (CFCOM) process that we developed using a ZnO factory furnace. At about 1200 °C, high velocity zinc vapor is instantly oxidized and captured in a steel mesh for 20s and then air-quenched. From this subminute synthesis process, three types of polycrystalline 2-D tripodal nanostructures are discovered. The ZnO tripods are composed of three planar arms that appear as rectangular nanoplates. We propose two growth routes for these planar tripods, namely base-arm and tripodal-core routes. For the former route, growth begins with the base arm in [[unk] [unk] 20 ] direction. During quenching, the other two arms grow from newly formed tapered facets, ([unk]110) and (1[unk]10). The tripodal-core growth route involves the formation of a hexagonal disc with ±( 0002 ) larger surfaces. From this core, three arms grow simultaneously in [ 11[unk]0 ], [ [unk]10 ] and [ 1[unk]10 ] directions, while the core transforms into a Y-shaped configuration with ±( 10[unk]0), ±( 01[unk]0 ) and ±( [unk]100 ) planes. Morphological analyses are performed using FESEM, EDS, TEM and XRD. Photoluminescence test detects the presence of structural defects associated with green and red peak emissions.\",\"PeriodicalId\":220722,\"journal\":{\"name\":\"2006 IEEE Conference on Emerging Technologies - Nanoelectronics\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Emerging Technologies - Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOEL.2006.1609767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOEL.2006.1609767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report the discovery of two-dimensional (2-D) nanotripods of ZnO, a new member of the ZnO nanostructure family. These planar nanotripods are synthesized via a novel approach known as catalyst-free combust-oxidized mesh (CFCOM) process that we developed using a ZnO factory furnace. At about 1200 °C, high velocity zinc vapor is instantly oxidized and captured in a steel mesh for 20s and then air-quenched. From this subminute synthesis process, three types of polycrystalline 2-D tripodal nanostructures are discovered. The ZnO tripods are composed of three planar arms that appear as rectangular nanoplates. We propose two growth routes for these planar tripods, namely base-arm and tripodal-core routes. For the former route, growth begins with the base arm in [[unk] [unk] 20 ] direction. During quenching, the other two arms grow from newly formed tapered facets, ([unk]110) and (1[unk]10). The tripodal-core growth route involves the formation of a hexagonal disc with ±( 0002 ) larger surfaces. From this core, three arms grow simultaneously in [ 11[unk]0 ], [ [unk]10 ] and [ 1[unk]10 ] directions, while the core transforms into a Y-shaped configuration with ±( 10[unk]0), ±( 01[unk]0 ) and ±( [unk]100 ) planes. Morphological analyses are performed using FESEM, EDS, TEM and XRD. Photoluminescence test detects the presence of structural defects associated with green and red peak emissions.