基于仿真的小型机器鱼位置估计设计

Sang-Cheol Lee, Youn Tae Kang, S. Hong, Y. Ryuh
{"title":"基于仿真的小型机器鱼位置估计设计","authors":"Sang-Cheol Lee, Youn Tae Kang, S. Hong, Y. Ryuh","doi":"10.1109/URAI.2013.6677306","DOIUrl":null,"url":null,"abstract":"This paper presents the position estimation for small robotic fish using GPS(Global Positioning System)/INS (Inertial Navigation System) and USBL (Ultra-Short Baseline). The main purpose of the paper is divided in to two parts: 1) to minimize the drift error that is inevitable in the double integration process in INS. 2) to enhance accuracy and update rates on the small robotic fish's position estimates. The simulation results show the efficiency of this algorithm.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation based design for position estimation of small robotic fish\",\"authors\":\"Sang-Cheol Lee, Youn Tae Kang, S. Hong, Y. Ryuh\",\"doi\":\"10.1109/URAI.2013.6677306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the position estimation for small robotic fish using GPS(Global Positioning System)/INS (Inertial Navigation System) and USBL (Ultra-Short Baseline). The main purpose of the paper is divided in to two parts: 1) to minimize the drift error that is inevitable in the double integration process in INS. 2) to enhance accuracy and update rates on the small robotic fish's position estimates. The simulation results show the efficiency of this algorithm.\",\"PeriodicalId\":431699,\"journal\":{\"name\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2013.6677306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了基于GPS /INS和USBL的小型机器鱼位置估计方法。本文的主要目的分为两部分:1)最小化惯导系统双积分过程中不可避免的漂移误差。2)提高小型机器鱼位置估计的准确性和更新率。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation based design for position estimation of small robotic fish
This paper presents the position estimation for small robotic fish using GPS(Global Positioning System)/INS (Inertial Navigation System) and USBL (Ultra-Short Baseline). The main purpose of the paper is divided in to two parts: 1) to minimize the drift error that is inevitable in the double integration process in INS. 2) to enhance accuracy and update rates on the small robotic fish's position estimates. The simulation results show the efficiency of this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信