{"title":"Pinsker不等式的分布相关的改进","authors":"E. Ordentlich, M. Weinberger","doi":"10.1109/ISIT.2004.1365068","DOIUrl":null,"url":null,"abstract":"Given two probability distributions Q and P, let /spl par/Q-P/spl par//sub 1/ and D(Q/spl par/P), respectively, denote the L/sub 1/ distance and divergence between Q and P. We derive a refinement of Pinsker's inequality of the form D(Q/spl par/P)/spl ges//spl phi/(P)/spl par/Q-P/spl par//sub 1//sup 2/ and characterize the best P-dependent factor /spl phi/(P).","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A distribution dependent refinement of Pinsker's inequality\",\"authors\":\"E. Ordentlich, M. Weinberger\",\"doi\":\"10.1109/ISIT.2004.1365068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two probability distributions Q and P, let /spl par/Q-P/spl par//sub 1/ and D(Q/spl par/P), respectively, denote the L/sub 1/ distance and divergence between Q and P. We derive a refinement of Pinsker's inequality of the form D(Q/spl par/P)/spl ges//spl phi/(P)/spl par/Q-P/spl par//sub 1//sup 2/ and characterize the best P-dependent factor /spl phi/(P).\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distribution dependent refinement of Pinsker's inequality
Given two probability distributions Q and P, let /spl par/Q-P/spl par//sub 1/ and D(Q/spl par/P), respectively, denote the L/sub 1/ distance and divergence between Q and P. We derive a refinement of Pinsker's inequality of the form D(Q/spl par/P)/spl ges//spl phi/(P)/spl par/Q-P/spl par//sub 1//sup 2/ and characterize the best P-dependent factor /spl phi/(P).