{"title":"HYBRID:挖掘频繁项集的有效统一过程","authors":"N. F. Zulkurnain, Ahmad Shah","doi":"10.1109/ICETSS.2017.8324140","DOIUrl":null,"url":null,"abstract":"Current advancement in technology inexorably leads to data flood. More data is generated from banking, telecom, scientific experiments, etc. Data mining is the process of extracting useful information from this flooded data, which helps in making profitable future decisions in these fields. Frequent itemset mining is one of the focus research areas and an important step to fin association rules. Time and space requirements for generating frequent itemsets are of utter importance. Algorithms to mine frequent itemsets effectively help in finding association rules and also help in many other data mining tasks. In this paper, an efficient hybrid algorithm was designed using a unifying process of the algorithms Improved Apriori and FP-Growth. Results indicate that the proposed hybrid algorithm, albeit more complex, consumes fewer memory resources and faster execution time.","PeriodicalId":228333,"journal":{"name":"2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS)","volume":"83 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HYBRID: An efficient unifying process to mine frequent itemsets\",\"authors\":\"N. F. Zulkurnain, Ahmad Shah\",\"doi\":\"10.1109/ICETSS.2017.8324140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current advancement in technology inexorably leads to data flood. More data is generated from banking, telecom, scientific experiments, etc. Data mining is the process of extracting useful information from this flooded data, which helps in making profitable future decisions in these fields. Frequent itemset mining is one of the focus research areas and an important step to fin association rules. Time and space requirements for generating frequent itemsets are of utter importance. Algorithms to mine frequent itemsets effectively help in finding association rules and also help in many other data mining tasks. In this paper, an efficient hybrid algorithm was designed using a unifying process of the algorithms Improved Apriori and FP-Growth. Results indicate that the proposed hybrid algorithm, albeit more complex, consumes fewer memory resources and faster execution time.\",\"PeriodicalId\":228333,\"journal\":{\"name\":\"2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS)\",\"volume\":\"83 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSS.2017.8324140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSS.2017.8324140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HYBRID: An efficient unifying process to mine frequent itemsets
Current advancement in technology inexorably leads to data flood. More data is generated from banking, telecom, scientific experiments, etc. Data mining is the process of extracting useful information from this flooded data, which helps in making profitable future decisions in these fields. Frequent itemset mining is one of the focus research areas and an important step to fin association rules. Time and space requirements for generating frequent itemsets are of utter importance. Algorithms to mine frequent itemsets effectively help in finding association rules and also help in many other data mining tasks. In this paper, an efficient hybrid algorithm was designed using a unifying process of the algorithms Improved Apriori and FP-Growth. Results indicate that the proposed hybrid algorithm, albeit more complex, consumes fewer memory resources and faster execution time.