基于机器学习的心电信号飞行员态势感知预测

Anushri Rajendran, P. Kebria, N. Mohajer, A. Khosravi, S. Nahavandi
{"title":"基于机器学习的心电信号飞行员态势感知预测","authors":"Anushri Rajendran, P. Kebria, N. Mohajer, A. Khosravi, S. Nahavandi","doi":"10.1109/SSCI50451.2021.9660076","DOIUrl":null,"url":null,"abstract":"Reducing aviation fatalities requires a high level of reliable real-time monitoring so that events can be predicted and prevented before they can occur. Situational awareness is essential in the cockpit where manual and autonomous operations co-exist. Many interventions and countermeasures have been designed into cockpits to enhance pilot awareness and performance. This study aims to analyse pilot and copilot teams' awareness by using physiological data which was collected in a flight simulator to train models to predict when pilots are in a state of Channelised Attention (CA), Diverted Attention (DA), and Startle/Surprise (SS). Electrocardiogram (ECG) signals collected for 18 subjects were processed in preparation to develop a comprehensive tool which utilises active Line Oriented Flight Training (LOFT) data to evaluate machine learning tools which are capable of predicting pilot awareness response. A combination of linear, non-linear, binary and multi-class classification were applied to this data. The results indicate that while all classifiers produced stable results, Decision Tree(DT) far outperformed the others. Further analyses revealed that the maximum value for ECG was the most important feature used by all classifiers evaluated for importance in training the classification models. However, for DT which was the best performing classifier both maximum and minimum ECG values were the most important features in predictions made by this model.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning based Prediction of Situational Awareness in Pilots using ECG Signals\",\"authors\":\"Anushri Rajendran, P. Kebria, N. Mohajer, A. Khosravi, S. Nahavandi\",\"doi\":\"10.1109/SSCI50451.2021.9660076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing aviation fatalities requires a high level of reliable real-time monitoring so that events can be predicted and prevented before they can occur. Situational awareness is essential in the cockpit where manual and autonomous operations co-exist. Many interventions and countermeasures have been designed into cockpits to enhance pilot awareness and performance. This study aims to analyse pilot and copilot teams' awareness by using physiological data which was collected in a flight simulator to train models to predict when pilots are in a state of Channelised Attention (CA), Diverted Attention (DA), and Startle/Surprise (SS). Electrocardiogram (ECG) signals collected for 18 subjects were processed in preparation to develop a comprehensive tool which utilises active Line Oriented Flight Training (LOFT) data to evaluate machine learning tools which are capable of predicting pilot awareness response. A combination of linear, non-linear, binary and multi-class classification were applied to this data. The results indicate that while all classifiers produced stable results, Decision Tree(DT) far outperformed the others. Further analyses revealed that the maximum value for ECG was the most important feature used by all classifiers evaluated for importance in training the classification models. However, for DT which was the best performing classifier both maximum and minimum ECG values were the most important features in predictions made by this model.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

减少航空死亡人数需要高水平的可靠实时监测,以便能够在事件发生之前进行预测和预防。在手动和自主操作并存的驾驶舱内,态势感知是必不可少的。许多干预措施和对策已被设计到驾驶舱,以提高飞行员的意识和性能。本研究旨在分析飞行员和副驾驶团队的意识,通过使用在飞行模拟器中收集的生理数据来训练模型,以预测飞行员何时处于注意力通道化(CA)、注意力转移(DA)和惊吓/惊喜(SS)状态。收集18名受试者的心电图(ECG)信号进行处理,准备开发一个综合工具,该工具利用主动线导向飞行训练(LOFT)数据来评估能够预测飞行员意识反应的机器学习工具。采用线性、非线性、二元和多类分类相结合的方法对该数据进行分类。结果表明,虽然所有分类器产生稳定的结果,决策树(DT)远远优于其他分类器。进一步分析表明,ECG的最大值是所有分类器在训练分类模型中评估重要性时使用的最重要的特征。然而,对于表现最好的分类器DT来说,最大和最小ECG值是该模型预测中最重要的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning based Prediction of Situational Awareness in Pilots using ECG Signals
Reducing aviation fatalities requires a high level of reliable real-time monitoring so that events can be predicted and prevented before they can occur. Situational awareness is essential in the cockpit where manual and autonomous operations co-exist. Many interventions and countermeasures have been designed into cockpits to enhance pilot awareness and performance. This study aims to analyse pilot and copilot teams' awareness by using physiological data which was collected in a flight simulator to train models to predict when pilots are in a state of Channelised Attention (CA), Diverted Attention (DA), and Startle/Surprise (SS). Electrocardiogram (ECG) signals collected for 18 subjects were processed in preparation to develop a comprehensive tool which utilises active Line Oriented Flight Training (LOFT) data to evaluate machine learning tools which are capable of predicting pilot awareness response. A combination of linear, non-linear, binary and multi-class classification were applied to this data. The results indicate that while all classifiers produced stable results, Decision Tree(DT) far outperformed the others. Further analyses revealed that the maximum value for ECG was the most important feature used by all classifiers evaluated for importance in training the classification models. However, for DT which was the best performing classifier both maximum and minimum ECG values were the most important features in predictions made by this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信