深度学习辅助5G信道估计

An Le Ha, Trinh Van Chien, T. Nguyen, Wan Choi, V. Nguyen
{"title":"深度学习辅助5G信道估计","authors":"An Le Ha, Trinh Van Chien, T. Nguyen, Wan Choi, V. Nguyen","doi":"10.1109/IMCOM51814.2021.9377351","DOIUrl":null,"url":null,"abstract":"Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors.","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"35 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Deep Learning-Aided 5G Channel Estimation\",\"authors\":\"An Le Ha, Trinh Van Chien, T. Nguyen, Wan Choi, V. Nguyen\",\"doi\":\"10.1109/IMCOM51814.2021.9377351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors.\",\"PeriodicalId\":275121,\"journal\":{\"name\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"35 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM51814.2021.9377351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

深度学习在提高5g及以上网络的系统性能和降低计算复杂性方面发挥了重要作用。为了支持最小二乘估计,本文提出了一种新的基于深度学习的信道估计方法。最小二乘估计是一种成本低但信道估计误差较大的方法。这一目标是通过利用MIMO(多输入多输出)系统实现的,该系统具有多路径信道配置文件,用于在多普勒效应严重的5G网络中进行模拟。数值结果表明,所提出的深度学习辅助信道估计方法在均方误差方面优于以往的其他信道估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Aided 5G Channel Estimation
Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-beyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信