小太阳耀斑和局部极性倒转线的纵向磁场活跃区

A. Borovik, A. Zhdanov
{"title":"小太阳耀斑和局部极性倒转线的纵向磁场活跃区","authors":"A. Borovik, A. Zhdanov","doi":"10.12737/szf-81202202","DOIUrl":null,"url":null,"abstract":"Using photospheric data and data on the longitudinal magnetic field from the SDO satellite, as well as observations in the Hα line from GONG ground stations, we have studied the flare activity of the NOAA 12673 sunspot group, which in September 2017 produced the largest X9.3 class flare in the last decade. The active region was distinguished by rapid development, complex topology, and magnetic field dynamics. We have established that in the active region almost throughout the development period due to movements of diverse polar magnetic fluxes and their convergence, numerous local polarity inversion lines (LPIL) of the magnetic field were formed. Small solar flares have been found to be closely related to LPIL and to occur in those areas of LPIL where the gradient of the longitudinal magnetic field over time reaches maximum values.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small solar flares and local polarity inversion lines of the longitudinal magnetic field of the active region\",\"authors\":\"A. Borovik, A. Zhdanov\",\"doi\":\"10.12737/szf-81202202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using photospheric data and data on the longitudinal magnetic field from the SDO satellite, as well as observations in the Hα line from GONG ground stations, we have studied the flare activity of the NOAA 12673 sunspot group, which in September 2017 produced the largest X9.3 class flare in the last decade. The active region was distinguished by rapid development, complex topology, and magnetic field dynamics. We have established that in the active region almost throughout the development period due to movements of diverse polar magnetic fluxes and their convergence, numerous local polarity inversion lines (LPIL) of the magnetic field were formed. Small solar flares have been found to be closely related to LPIL and to occur in those areas of LPIL where the gradient of the longitudinal magnetic field over time reaches maximum values.\",\"PeriodicalId\":351867,\"journal\":{\"name\":\"Solnechno-Zemnaya Fizika\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solnechno-Zemnaya Fizika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12737/szf-81202202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solnechno-Zemnaya Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/szf-81202202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用SDO卫星的光球数据和纵向磁场数据,以及GONG地面站的Hα线观测数据,我们研究了NOAA 12673太阳黑子群的耀斑活动,该群于2017年9月产生了近十年来最大的X9.3级耀斑。活跃区具有发展迅速、拓扑结构复杂、磁场动态等特点。我们发现,在整个发展过程中,由于各种极磁通量的运动及其辐合,在活动区内几乎形成了许多局部磁场极性反转线(LPIL)。小型太阳耀斑已被发现与LPIL密切相关,并且发生在LPIL纵向磁场随时间梯度达到最大值的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small solar flares and local polarity inversion lines of the longitudinal magnetic field of the active region
Using photospheric data and data on the longitudinal magnetic field from the SDO satellite, as well as observations in the Hα line from GONG ground stations, we have studied the flare activity of the NOAA 12673 sunspot group, which in September 2017 produced the largest X9.3 class flare in the last decade. The active region was distinguished by rapid development, complex topology, and magnetic field dynamics. We have established that in the active region almost throughout the development period due to movements of diverse polar magnetic fluxes and their convergence, numerous local polarity inversion lines (LPIL) of the magnetic field were formed. Small solar flares have been found to be closely related to LPIL and to occur in those areas of LPIL where the gradient of the longitudinal magnetic field over time reaches maximum values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信