用于性能评估和调优的工作流

J. Tilson, Mark S. C. Reed, R. Fowler
{"title":"用于性能评估和调优的工作流","authors":"J. Tilson, Mark S. C. Reed, R. Fowler","doi":"10.1109/CLUSTR.2008.4663758","DOIUrl":null,"url":null,"abstract":"We report our experiences with using high-throughput techniques to run large sets of performance experiments on collections of grid accessible parallel computer systems for the purpose of deploying optimally compiled and configured scientific applications. In these environments, the set of variable parameters (compiler, link, and runtime flags; application and library options; partition size) can be very large, so running the performance ensembles is labor intensive, tedious, and prone to errors. Automating this process improves productivity, reduces barriers to deploying and maintaining multi-platform codes, and facilitates the tracking of application and system performance over time. We describe the design and implementation of our system for running performance ensembles and we use two case studies as the basis for evaluating the long term potential for this approach. The architecture of a prototype benchmarking system is presented along with results on the efficacy of the workflow approach.","PeriodicalId":198768,"journal":{"name":"2008 IEEE International Conference on Cluster Computing","volume":"70 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Workflows for performance evaluation and tuning\",\"authors\":\"J. Tilson, Mark S. C. Reed, R. Fowler\",\"doi\":\"10.1109/CLUSTR.2008.4663758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report our experiences with using high-throughput techniques to run large sets of performance experiments on collections of grid accessible parallel computer systems for the purpose of deploying optimally compiled and configured scientific applications. In these environments, the set of variable parameters (compiler, link, and runtime flags; application and library options; partition size) can be very large, so running the performance ensembles is labor intensive, tedious, and prone to errors. Automating this process improves productivity, reduces barriers to deploying and maintaining multi-platform codes, and facilitates the tracking of application and system performance over time. We describe the design and implementation of our system for running performance ensembles and we use two case studies as the basis for evaluating the long term potential for this approach. The architecture of a prototype benchmarking system is presented along with results on the efficacy of the workflow approach.\",\"PeriodicalId\":198768,\"journal\":{\"name\":\"2008 IEEE International Conference on Cluster Computing\",\"volume\":\"70 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2008.4663758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2008.4663758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们报告了我们使用高通量技术在网格可访问并行计算机系统集合上运行大型性能实验集的经验,目的是部署最佳编译和配置的科学应用程序。在这些环境中,一组可变参数(编译器、链接和运行时标志);应用程序和库选项;分区大小)可能非常大,因此运行性能集成是一项劳动密集型工作,非常繁琐,而且容易出错。自动化这个过程提高了生产力,减少了部署和维护多平台代码的障碍,并促进了应用程序和系统性能随时间的跟踪。我们描述了运行性能集成系统的设计和实现,并使用两个案例研究作为评估该方法长期潜力的基础。给出了一个原型基准测试系统的体系结构,并对工作流方法的有效性进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Workflows for performance evaluation and tuning
We report our experiences with using high-throughput techniques to run large sets of performance experiments on collections of grid accessible parallel computer systems for the purpose of deploying optimally compiled and configured scientific applications. In these environments, the set of variable parameters (compiler, link, and runtime flags; application and library options; partition size) can be very large, so running the performance ensembles is labor intensive, tedious, and prone to errors. Automating this process improves productivity, reduces barriers to deploying and maintaining multi-platform codes, and facilitates the tracking of application and system performance over time. We describe the design and implementation of our system for running performance ensembles and we use two case studies as the basis for evaluating the long term potential for this approach. The architecture of a prototype benchmarking system is presented along with results on the efficacy of the workflow approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信