用四元数矩阵表示螺旋-螺旋轨迹的自然三面体运动学

A. Alpatov, V. Kravets, V. Kravets, E. Lapkhanov
{"title":"用四元数矩阵表示螺旋-螺旋轨迹的自然三面体运动学","authors":"A. Alpatov, V. Kravets, V. Kravets, E. Lapkhanov","doi":"10.14738/tmlai.94.10523","DOIUrl":null,"url":null,"abstract":"The spiral-helix trajectory of the transport vehicle programmed motion in the form of a hodograph in the stationary frame of reference is considered. A relative frame of reference associated with the natural trihedral of the trajectory is introduced. The formulas of curvature and torsion of the trajectory, the unit vector of the natural trihedral, the components of the angular velocity of rotation of the natural trihedral in the proper axes and in the stationary frame of reference are set in the quaternionic matrices. The results are verified using the Frenet-Serret formulas. The mathematical apparatus of quaternion matrices is tested with the aim of adapting spatial, nonlinear problems of dynamic design of transport vehicles to a computational experiment.","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representation of the kinematics of the natural trihedral of a spiral-helix trajectory by quaternion matrices\",\"authors\":\"A. Alpatov, V. Kravets, V. Kravets, E. Lapkhanov\",\"doi\":\"10.14738/tmlai.94.10523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spiral-helix trajectory of the transport vehicle programmed motion in the form of a hodograph in the stationary frame of reference is considered. A relative frame of reference associated with the natural trihedral of the trajectory is introduced. The formulas of curvature and torsion of the trajectory, the unit vector of the natural trihedral, the components of the angular velocity of rotation of the natural trihedral in the proper axes and in the stationary frame of reference are set in the quaternionic matrices. The results are verified using the Frenet-Serret formulas. The mathematical apparatus of quaternion matrices is tested with the aim of adapting spatial, nonlinear problems of dynamic design of transport vehicles to a computational experiment.\",\"PeriodicalId\":119801,\"journal\":{\"name\":\"Transactions on Machine Learning and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Machine Learning and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tmlai.94.10523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.94.10523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了固定参照系中运输车辆程序运动的螺旋-螺旋轨迹。介绍了一种与自然三面体轨迹相关的相对参考系。在四元数矩阵中建立了轨迹的曲率和扭转、自然三面体的单位矢量、自然三面体在固有轴和静止参照系中的角速度分量的计算公式。用Frenet-Serret公式对结果进行了验证。本文对四元数矩阵的数学装置进行了测试,目的是将运输车辆动力设计的空间非线性问题应用于计算实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of the kinematics of the natural trihedral of a spiral-helix trajectory by quaternion matrices
The spiral-helix trajectory of the transport vehicle programmed motion in the form of a hodograph in the stationary frame of reference is considered. A relative frame of reference associated with the natural trihedral of the trajectory is introduced. The formulas of curvature and torsion of the trajectory, the unit vector of the natural trihedral, the components of the angular velocity of rotation of the natural trihedral in the proper axes and in the stationary frame of reference are set in the quaternionic matrices. The results are verified using the Frenet-Serret formulas. The mathematical apparatus of quaternion matrices is tested with the aim of adapting spatial, nonlinear problems of dynamic design of transport vehicles to a computational experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信