远程医疗系统的初步研究:无体感器老年人活动分类

Samet Koçak, T. Artug, Gokalp Tulum
{"title":"远程医疗系统的初步研究:无体感器老年人活动分类","authors":"Samet Koçak, T. Artug, Gokalp Tulum","doi":"10.1109/CEIT.2018.8751859","DOIUrl":null,"url":null,"abstract":"Development of intelligent care system for elder people have been investigated in recent years. In this study, to detect emergency situations for elder people, activity classification was aimed using on body sensor data. Multi-layer perceptron, radial basis function networks, k- nearest neighbor and support vector machines were used in classification. In feature selection process principal component analysis and ReliefF were used. Accuracy of classification was above 85% for every classifier and the best performance was acquired with 3-NN with 99.8% accuracy. When feature selection was applied 5- NN was showed the highest performance with 99.4%. This study shows that it is possible to develop remote care system by using sensors and classifiers for a more secure life for elder people.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Preliminary Study for Remote Healthcare System: Activity Classification for Elder People with on Body Sensors\",\"authors\":\"Samet Koçak, T. Artug, Gokalp Tulum\",\"doi\":\"10.1109/CEIT.2018.8751859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of intelligent care system for elder people have been investigated in recent years. In this study, to detect emergency situations for elder people, activity classification was aimed using on body sensor data. Multi-layer perceptron, radial basis function networks, k- nearest neighbor and support vector machines were used in classification. In feature selection process principal component analysis and ReliefF were used. Accuracy of classification was above 85% for every classifier and the best performance was acquired with 3-NN with 99.8% accuracy. When feature selection was applied 5- NN was showed the highest performance with 99.4%. This study shows that it is possible to develop remote care system by using sensors and classifiers for a more secure life for elder people.\",\"PeriodicalId\":357613,\"journal\":{\"name\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIT.2018.8751859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人们对老年人智能护理系统的发展进行了研究。在本研究中,利用身体传感器数据进行活动分类,以检测老年人的紧急情况。采用多层感知机、径向基函数网络、k近邻和支持向量机进行分类。在特征选择过程中,使用了主成分分析和ReliefF。每个分类器的分类准确率均在85%以上,其中3-神经网络的分类准确率为99.8%。当应用特征选择时,5-神经网络的识别性能最高,达到99.4%。本研究表明,利用传感器和分类器开发远程护理系统,为老年人提供更安全的生活是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Preliminary Study for Remote Healthcare System: Activity Classification for Elder People with on Body Sensors
Development of intelligent care system for elder people have been investigated in recent years. In this study, to detect emergency situations for elder people, activity classification was aimed using on body sensor data. Multi-layer perceptron, radial basis function networks, k- nearest neighbor and support vector machines were used in classification. In feature selection process principal component analysis and ReliefF were used. Accuracy of classification was above 85% for every classifier and the best performance was acquired with 3-NN with 99.8% accuracy. When feature selection was applied 5- NN was showed the highest performance with 99.4%. This study shows that it is possible to develop remote care system by using sensors and classifiers for a more secure life for elder people.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信