紧李群中带值环的度、混合和绝对连续谱

R. T. Aldecoa
{"title":"紧李群中带值环的度、混合和绝对连续谱","authors":"R. T. Aldecoa","doi":"10.17654/DS030040135","DOIUrl":null,"url":null,"abstract":"We consider skew products $$T_\\phi:X\\times G\\to X\\times G,~~(x,g)\\mapsto(F_1(x),g\\;\\!\\phi(x)),$$ where $X$ is a compact manifold with probability measure, $G$ a compact Lie group with Lie algebra $\\frak g$, $F_1:X\\to X$ the time-one map of a measure-preserving flow, and $\\phi\\in C^1(X,G)$ a cocycle. Then, we define the degree of $\\phi$ as a suitable function $P_\\phi M_\\phi:X\\to\\frak g$, we show that it transforms in a natural way under Lie group homomorphisms and under the relation of $C^1$-cohomology, and we explain how it generalises previous definitions of degree of a cocycle. For each finite-dimensional irreducible representation $\\pi$ of $G$, and $\\frak g_\\pi$ the Lie algebra of $\\pi(G)$, we define in an analogous way the degree of $\\pi\\circ\\phi$ as a suitable function $P_{\\pi\\circ\\phi}M_{\\pi\\circ\\phi}:X\\to\\frak g_\\pi$. If $F_1$ is uniquely ergodic and the functions $\\pi\\circ\\phi$ diagonal, or if $T_\\phi$ is uniquely ergodic, then the degree of $\\phi$ reduces to a constant in $\\frak g$ given by an integral over $X$. As a by-product, we obtain that there is no uniquely ergodic skew product $T_\\phi$ with nonzero degree if $G$ is a connected semisimple compact Lie group. \nNext, we show that $T_\\phi$ is mixing in the orthocomplement of the kernel of $P_{\\pi\\circ\\phi}M_{\\pi\\circ\\phi}$, and under some additional assumptions we show that $U_\\phi$ has purely absolutely continuous spectrum in that orthocomplement if $(iP_{\\pi\\circ\\phi}M_{\\pi\\circ\\phi})^2$ is strictly positive. Summing up these results for each $\\pi$, one obtains a global result for the mixing and the absolutely continuous spectrum of $T_\\phi$. As an application, we present four explicit cases: when $G$ is a torus, $G=SU(2)$, $G=SO(3,\\mathbb R)$, and $G=U(2)$. In each case, the results we obtain are new, or generalise previous results. \nOur proofs rely on new results on positive commutator methods for unitary operators.","PeriodicalId":330387,"journal":{"name":"Far East Journal of Dynamical Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DEGREE, MIXING, AND ABSOLUTELY CONTINUOUS SPECTRUM OF COCYCLES WITH VALUES IN COMPACT LIE GROUPS\",\"authors\":\"R. T. Aldecoa\",\"doi\":\"10.17654/DS030040135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider skew products $$T_\\\\phi:X\\\\times G\\\\to X\\\\times G,~~(x,g)\\\\mapsto(F_1(x),g\\\\;\\\\!\\\\phi(x)),$$ where $X$ is a compact manifold with probability measure, $G$ a compact Lie group with Lie algebra $\\\\frak g$, $F_1:X\\\\to X$ the time-one map of a measure-preserving flow, and $\\\\phi\\\\in C^1(X,G)$ a cocycle. Then, we define the degree of $\\\\phi$ as a suitable function $P_\\\\phi M_\\\\phi:X\\\\to\\\\frak g$, we show that it transforms in a natural way under Lie group homomorphisms and under the relation of $C^1$-cohomology, and we explain how it generalises previous definitions of degree of a cocycle. For each finite-dimensional irreducible representation $\\\\pi$ of $G$, and $\\\\frak g_\\\\pi$ the Lie algebra of $\\\\pi(G)$, we define in an analogous way the degree of $\\\\pi\\\\circ\\\\phi$ as a suitable function $P_{\\\\pi\\\\circ\\\\phi}M_{\\\\pi\\\\circ\\\\phi}:X\\\\to\\\\frak g_\\\\pi$. If $F_1$ is uniquely ergodic and the functions $\\\\pi\\\\circ\\\\phi$ diagonal, or if $T_\\\\phi$ is uniquely ergodic, then the degree of $\\\\phi$ reduces to a constant in $\\\\frak g$ given by an integral over $X$. As a by-product, we obtain that there is no uniquely ergodic skew product $T_\\\\phi$ with nonzero degree if $G$ is a connected semisimple compact Lie group. \\nNext, we show that $T_\\\\phi$ is mixing in the orthocomplement of the kernel of $P_{\\\\pi\\\\circ\\\\phi}M_{\\\\pi\\\\circ\\\\phi}$, and under some additional assumptions we show that $U_\\\\phi$ has purely absolutely continuous spectrum in that orthocomplement if $(iP_{\\\\pi\\\\circ\\\\phi}M_{\\\\pi\\\\circ\\\\phi})^2$ is strictly positive. Summing up these results for each $\\\\pi$, one obtains a global result for the mixing and the absolutely continuous spectrum of $T_\\\\phi$. As an application, we present four explicit cases: when $G$ is a torus, $G=SU(2)$, $G=SO(3,\\\\mathbb R)$, and $G=U(2)$. In each case, the results we obtain are new, or generalise previous results. \\nOur proofs rely on new results on positive commutator methods for unitary operators.\",\"PeriodicalId\":330387,\"journal\":{\"name\":\"Far East Journal of Dynamical Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far East Journal of Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/DS030040135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/DS030040135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑斜积$$T_\phi:X\times G\to X\times G,~~(x,g)\mapsto(F_1(x),g\;\!\phi(x)),$$,其中$X$是一个具有概率测度的紧流形,$G$是一个具有李代数的紧李群$\frak g$, $F_1:X\to X$是一个保测度流的时间一映射,$\phi\in C^1(X,G)$是一个循环。然后,我们将$\phi$的度数定义为一个合适的函数$P_\phi M_\phi:X\to\frak g$,证明了它在李群同态和$C^1$ -上同调关系下的自然变换,并解释了它是如何推广以往关于循环度数的定义的。对于$G$的每个有限维不可约表示$\pi$和$\pi(G)$的李代数$\frak g_\pi$,我们以类似的方式将$\pi\circ\phi$的度定义为一个合适的函数$P_{\pi\circ\phi}M_{\pi\circ\phi}:X\to\frak g_\pi$。如果$F_1$是唯一遍历的,并且函数$\pi\circ\phi$是对角的,或者如果$T_\phi$是唯一遍历的,那么$\phi$的阶在$\frak g$中化为一个常数,由$X$上的积分给出。作为副产物,我们得到了如果$G$是连通的半单紧李群,不存在唯一的非零度遍历偏积$T_\phi$。接下来,我们证明$T_\phi$在$P_{\pi\circ\phi}M_{\pi\circ\phi}$核的正补中混合,并且在一些额外的假设下,我们证明$U_\phi$在该正补中具有纯粹的绝对连续谱,如果$(iP_{\pi\circ\phi}M_{\pi\circ\phi})^2$是严格正的。将每个$\pi$的结果总结起来,就可以得到$T_\phi$的混合和绝对连续谱的全局结果。作为一个应用程序,我们给出了四种明确的情况:$G$是环面、$G=SU(2)$、$G=SO(3,\mathbb R)$和$G=U(2)$。在每种情况下,我们获得的结果都是新的,或者是对以前结果的概括。我们的证明依赖于酉算子正对易子方法的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEGREE, MIXING, AND ABSOLUTELY CONTINUOUS SPECTRUM OF COCYCLES WITH VALUES IN COMPACT LIE GROUPS
We consider skew products $$T_\phi:X\times G\to X\times G,~~(x,g)\mapsto(F_1(x),g\;\!\phi(x)),$$ where $X$ is a compact manifold with probability measure, $G$ a compact Lie group with Lie algebra $\frak g$, $F_1:X\to X$ the time-one map of a measure-preserving flow, and $\phi\in C^1(X,G)$ a cocycle. Then, we define the degree of $\phi$ as a suitable function $P_\phi M_\phi:X\to\frak g$, we show that it transforms in a natural way under Lie group homomorphisms and under the relation of $C^1$-cohomology, and we explain how it generalises previous definitions of degree of a cocycle. For each finite-dimensional irreducible representation $\pi$ of $G$, and $\frak g_\pi$ the Lie algebra of $\pi(G)$, we define in an analogous way the degree of $\pi\circ\phi$ as a suitable function $P_{\pi\circ\phi}M_{\pi\circ\phi}:X\to\frak g_\pi$. If $F_1$ is uniquely ergodic and the functions $\pi\circ\phi$ diagonal, or if $T_\phi$ is uniquely ergodic, then the degree of $\phi$ reduces to a constant in $\frak g$ given by an integral over $X$. As a by-product, we obtain that there is no uniquely ergodic skew product $T_\phi$ with nonzero degree if $G$ is a connected semisimple compact Lie group. Next, we show that $T_\phi$ is mixing in the orthocomplement of the kernel of $P_{\pi\circ\phi}M_{\pi\circ\phi}$, and under some additional assumptions we show that $U_\phi$ has purely absolutely continuous spectrum in that orthocomplement if $(iP_{\pi\circ\phi}M_{\pi\circ\phi})^2$ is strictly positive. Summing up these results for each $\pi$, one obtains a global result for the mixing and the absolutely continuous spectrum of $T_\phi$. As an application, we present four explicit cases: when $G$ is a torus, $G=SU(2)$, $G=SO(3,\mathbb R)$, and $G=U(2)$. In each case, the results we obtain are new, or generalise previous results. Our proofs rely on new results on positive commutator methods for unitary operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信