多层感知器的指标矩阵解释

K. Atanassov, S. Sotirov
{"title":"多层感知器的指标矩阵解释","authors":"K. Atanassov, S. Sotirov","doi":"10.1109/INISTA.2013.6577637","DOIUrl":null,"url":null,"abstract":"Neural networks are a mathematical model for solving problems, that uses the structure of human brain. One of the mostly used kinds of neural networks, the Multilayer perceptron (MLP), has been modelled with various tools. Here, starting with the MLP, we approach the problem by modelling neural networks in terms of index matrices (IMs). The work includes IM interpretations of the building components of the neural network, namely, input vector, weight coefficients, transfer function, and biases, as well as the various operations defined over these.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Index matrix interpretation of the Multilayer perceptron\",\"authors\":\"K. Atanassov, S. Sotirov\",\"doi\":\"10.1109/INISTA.2013.6577637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are a mathematical model for solving problems, that uses the structure of human brain. One of the mostly used kinds of neural networks, the Multilayer perceptron (MLP), has been modelled with various tools. Here, starting with the MLP, we approach the problem by modelling neural networks in terms of index matrices (IMs). The work includes IM interpretations of the building components of the neural network, namely, input vector, weight coefficients, transfer function, and biases, as well as the various operations defined over these.\",\"PeriodicalId\":301458,\"journal\":{\"name\":\"2013 IEEE INISTA\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE INISTA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2013.6577637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

神经网络是一种利用人类大脑结构来解决问题的数学模型。最常用的神经网络之一,多层感知器(MLP),已经用各种工具建模。这里,从MLP开始,我们通过根据索引矩阵(IMs)对神经网络建模来解决问题。这项工作包括对神经网络构建组件的IM解释,即输入向量、权重系数、传递函数和偏差,以及在这些组件上定义的各种操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Index matrix interpretation of the Multilayer perceptron
Neural networks are a mathematical model for solving problems, that uses the structure of human brain. One of the mostly used kinds of neural networks, the Multilayer perceptron (MLP), has been modelled with various tools. Here, starting with the MLP, we approach the problem by modelling neural networks in terms of index matrices (IMs). The work includes IM interpretations of the building components of the neural network, namely, input vector, weight coefficients, transfer function, and biases, as well as the various operations defined over these.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信