针对多目标背包问题的改进的MOEA/D全局替换策略

Xingxing Hao, Jing Liu, Zhenkun Wang
{"title":"针对多目标背包问题的改进的MOEA/D全局替换策略","authors":"Xingxing Hao, Jing Liu, Zhenkun Wang","doi":"10.1109/COASE.2017.8256172","DOIUrl":null,"url":null,"abstract":"The multi-objective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multi-objective optimization problem into a number of single scalar optimization problems and solves them simultaneously. The replacement strategy employed in MOEA/D has significant effects in terms of balancing convergence and diversity. In this paper, the effectiveness of MOEA/D with global replacement (GR) scheme is first investigated on many-objective knapsack problems. Then, we propose an improved version of GR, which is denoted as IGR, for the situation of adopting the utopian point as the reference point in MOEA/D. The experimental results on knapsack problems with 2, 4, 6, and 8 objectives illustrate that the GR scheme outperforms the original MOEA/D adopting the ideal point as the reference point and the IGR scheme outperforms the original MOEA/D adopting the utopian point as the reference point.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved global replacement strategy for MOEA/D on many-objective kanpsack problems\",\"authors\":\"Xingxing Hao, Jing Liu, Zhenkun Wang\",\"doi\":\"10.1109/COASE.2017.8256172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-objective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multi-objective optimization problem into a number of single scalar optimization problems and solves them simultaneously. The replacement strategy employed in MOEA/D has significant effects in terms of balancing convergence and diversity. In this paper, the effectiveness of MOEA/D with global replacement (GR) scheme is first investigated on many-objective knapsack problems. Then, we propose an improved version of GR, which is denoted as IGR, for the situation of adopting the utopian point as the reference point in MOEA/D. The experimental results on knapsack problems with 2, 4, 6, and 8 objectives illustrate that the GR scheme outperforms the original MOEA/D adopting the ideal point as the reference point and the IGR scheme outperforms the original MOEA/D adopting the utopian point as the reference point.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于分解的多目标进化算法(MOEA/D)将多目标优化问题分解为多个单标量优化问题并同时求解。MOEA/D采用的替代策略在平衡收敛性和多样性方面具有显著的效果。本文首先研究了带全局替换的MOEA/D算法在多目标背包问题上的有效性。然后,针对MOEA/D中采用乌托邦点作为参考点的情况,我们提出了一种改进的GR,记为IGR。在2、4、6、8个目标的背包问题上的实验结果表明,以理想点为参考点的GR方案优于原MOEA/D方案,以乌托邦点为参考点的IGR方案优于原MOEA/D方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved global replacement strategy for MOEA/D on many-objective kanpsack problems
The multi-objective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multi-objective optimization problem into a number of single scalar optimization problems and solves them simultaneously. The replacement strategy employed in MOEA/D has significant effects in terms of balancing convergence and diversity. In this paper, the effectiveness of MOEA/D with global replacement (GR) scheme is first investigated on many-objective knapsack problems. Then, we propose an improved version of GR, which is denoted as IGR, for the situation of adopting the utopian point as the reference point in MOEA/D. The experimental results on knapsack problems with 2, 4, 6, and 8 objectives illustrate that the GR scheme outperforms the original MOEA/D adopting the ideal point as the reference point and the IGR scheme outperforms the original MOEA/D adopting the utopian point as the reference point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信