求解二维Navier-Stokes方程的双时间尺度CNN

T. Kozek, T. Roska
{"title":"求解二维Navier-Stokes方程的双时间尺度CNN","authors":"T. Kozek, T. Roska","doi":"10.1109/CNNA.1994.381668","DOIUrl":null,"url":null,"abstract":"A practical cellular neural network (CNN) approximation to the Navier Stokes equation describing viscous flow of incompressible fluids is presented. The implementation of the CNN templates based on a finite difference discretization scheme, including the double time-scale CNN dynamics and the treatment of various types of boundary conditions are explained. The operation of the continuous time model is demonstrated through several examples.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A double time-scale CNN for solving 2-D Navier-Stokes equations\",\"authors\":\"T. Kozek, T. Roska\",\"doi\":\"10.1109/CNNA.1994.381668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A practical cellular neural network (CNN) approximation to the Navier Stokes equation describing viscous flow of incompressible fluids is presented. The implementation of the CNN templates based on a finite difference discretization scheme, including the double time-scale CNN dynamics and the treatment of various types of boundary conditions are explained. The operation of the continuous time model is demonstrated through several examples.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种实用的细胞神经网络(CNN)逼近描述不可压缩流体粘性流动的Navier Stokes方程。说明了基于有限差分离散化方案的CNN模板的实现,包括双时间尺度CNN动态和各种类型边界条件的处理。通过几个算例说明了连续时间模型的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A double time-scale CNN for solving 2-D Navier-Stokes equations
A practical cellular neural network (CNN) approximation to the Navier Stokes equation describing viscous flow of incompressible fluids is presented. The implementation of the CNN templates based on a finite difference discretization scheme, including the double time-scale CNN dynamics and the treatment of various types of boundary conditions are explained. The operation of the continuous time model is demonstrated through several examples.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信