经济环境变化和部分信息条件下储能设施的最优控制

Anton A. Shardin, Michaela Szolgyenyi
{"title":"经济环境变化和部分信息条件下储能设施的最优控制","authors":"Anton A. Shardin, Michaela Szolgyenyi","doi":"10.1142/S0219024916500266","DOIUrl":null,"url":null,"abstract":"In this paper we consider an energy storage optimization problem in finite time in a model with partial information that allows for a changing economic environment. The state process consists of the storage level controlled by the storage manager and the energy price process, which is a diffusion process the drift of which is assumed to be unobservable. We apply filtering theory to find an alternative state process which is adapted to our observation filtration. For this alternative state process we derive the associated Hamilton-Jacobi-Bellman equation and solve the optimization problem numerically. This results in a candidate for the optimal policy for which it is a-priori not clear whether the controlled state process exists. Hence, we prove an existence and uniqueness result for a class of time-inhomogeneous stochastic differential equations with discontinuous drift and singular diffusion coefficient. Finally, we apply our result to prove admissibility of the candidate optimal control.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Optimal Control of an Energy Storage Facility Under a Changing Economic Environment and Partial Information\",\"authors\":\"Anton A. Shardin, Michaela Szolgyenyi\",\"doi\":\"10.1142/S0219024916500266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider an energy storage optimization problem in finite time in a model with partial information that allows for a changing economic environment. The state process consists of the storage level controlled by the storage manager and the energy price process, which is a diffusion process the drift of which is assumed to be unobservable. We apply filtering theory to find an alternative state process which is adapted to our observation filtration. For this alternative state process we derive the associated Hamilton-Jacobi-Bellman equation and solve the optimization problem numerically. This results in a candidate for the optimal policy for which it is a-priori not clear whether the controlled state process exists. Hence, we prove an existence and uniqueness result for a class of time-inhomogeneous stochastic differential equations with discontinuous drift and singular diffusion coefficient. Finally, we apply our result to prove admissibility of the candidate optimal control.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219024916500266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219024916500266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在本文中,我们考虑了一个有限时间的能量存储优化问题,该问题是在一个允许经济环境变化的部分信息模型中。状态过程由存储管理者控制的存储水平和能源价格过程组成,这是一个扩散过程,假设其漂移是不可观察的。我们应用滤波理论来寻找一个适应于我们的观测滤波的替代状态过程。针对该备选状态过程,导出了相应的Hamilton-Jacobi-Bellman方程,并对优化问题进行了数值求解。这就产生了一个最优策略的候选策略,对于该策略,先验地不清楚受控状态过程是否存在。因此,我们证明了一类具有不连续漂移和奇异扩散系数的时间非齐次随机微分方程的存在唯一性。最后,利用所得结果证明了候选最优控制的可容许性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control of an Energy Storage Facility Under a Changing Economic Environment and Partial Information
In this paper we consider an energy storage optimization problem in finite time in a model with partial information that allows for a changing economic environment. The state process consists of the storage level controlled by the storage manager and the energy price process, which is a diffusion process the drift of which is assumed to be unobservable. We apply filtering theory to find an alternative state process which is adapted to our observation filtration. For this alternative state process we derive the associated Hamilton-Jacobi-Bellman equation and solve the optimization problem numerically. This results in a candidate for the optimal policy for which it is a-priori not clear whether the controlled state process exists. Hence, we prove an existence and uniqueness result for a class of time-inhomogeneous stochastic differential equations with discontinuous drift and singular diffusion coefficient. Finally, we apply our result to prove admissibility of the candidate optimal control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信