需求不确定性的成本敏感性分析与可再生能源预测

N. Čović, Domagoj Badanjak, K. Šepetanc, H. Pandžić
{"title":"需求不确定性的成本敏感性分析与可再生能源预测","authors":"N. Čović, Domagoj Badanjak, K. Šepetanc, H. Pandžić","doi":"10.1109/MELECON53508.2022.9842933","DOIUrl":null,"url":null,"abstract":"Addressing uncertainty has become a necessity when modeling modern power systems. Many state-of-the-art methods suffer from either poor uncertainty characterization or a high computational burden. This paper proposes a model that is easy to implement, fast to compute, and effective in addressing uncertainty. It is based on the model predictive control algorithm with the addition of uncertainty parameters optimization. For demonstration purposes, the model is applied to a microgrid consisting of a wind turbine, a local load, and battery energy storage. The model seeks to satisfy the local demand at the lowest cost by procuring energy from the battery energy storage, the wind turbine (in its portfolio), or the wholesale market, where wind power output, local demand, and market prices are uncertain parameters. In the presented case study, the upper bounds obtained using our model are close to the perfect information deterministic model values. Hence, this model has a great potential for practical use.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost Sensitivity Analysis to Uncertainty in Demand and Renewable Energy Sources Forecasts\",\"authors\":\"N. Čović, Domagoj Badanjak, K. Šepetanc, H. Pandžić\",\"doi\":\"10.1109/MELECON53508.2022.9842933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing uncertainty has become a necessity when modeling modern power systems. Many state-of-the-art methods suffer from either poor uncertainty characterization or a high computational burden. This paper proposes a model that is easy to implement, fast to compute, and effective in addressing uncertainty. It is based on the model predictive control algorithm with the addition of uncertainty parameters optimization. For demonstration purposes, the model is applied to a microgrid consisting of a wind turbine, a local load, and battery energy storage. The model seeks to satisfy the local demand at the lowest cost by procuring energy from the battery energy storage, the wind turbine (in its portfolio), or the wholesale market, where wind power output, local demand, and market prices are uncertain parameters. In the presented case study, the upper bounds obtained using our model are close to the perfect information deterministic model values. Hence, this model has a great potential for practical use.\",\"PeriodicalId\":303656,\"journal\":{\"name\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON53508.2022.9842933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9842933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对现代电力系统建模时,解决不确定性已经成为一种必要。许多最先进的方法要么不确定度表征差,要么计算量大。本文提出了一种易于实现、计算速度快、能有效处理不确定性的模型。它是在模型预测控制算法的基础上,加入了不确定性参数优化。为了演示,将该模型应用于由风力涡轮机、局部负载和电池储能组成的微电网。该模型通过从电池储能、风力涡轮机(在其投资组合中)或批发市场购买能源,寻求以最低成本满足当地需求,其中风力发电量、当地需求和市场价格是不确定的参数。在实例研究中,利用我们的模型得到的上界接近于完美的信息确定性模型值。因此,该模型具有很大的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost Sensitivity Analysis to Uncertainty in Demand and Renewable Energy Sources Forecasts
Addressing uncertainty has become a necessity when modeling modern power systems. Many state-of-the-art methods suffer from either poor uncertainty characterization or a high computational burden. This paper proposes a model that is easy to implement, fast to compute, and effective in addressing uncertainty. It is based on the model predictive control algorithm with the addition of uncertainty parameters optimization. For demonstration purposes, the model is applied to a microgrid consisting of a wind turbine, a local load, and battery energy storage. The model seeks to satisfy the local demand at the lowest cost by procuring energy from the battery energy storage, the wind turbine (in its portfolio), or the wholesale market, where wind power output, local demand, and market prices are uncertain parameters. In the presented case study, the upper bounds obtained using our model are close to the perfect information deterministic model values. Hence, this model has a great potential for practical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信