使周期运动原语适应外部反馈:调制和改变运动

A. Gams, T. Petrič
{"title":"使周期运动原语适应外部反馈:调制和改变运动","authors":"A. Gams, T. Petrič","doi":"10.1109/RAAD.2014.7002228","DOIUrl":null,"url":null,"abstract":"Learning and execution of trajectories using dynamic movement primitives (DMPs) incorporates properties, which make them widely accepted and used in synthesizing robotic motions. The properties include fast, robust and numerically undemanding learning on one side, and indirect dependence on time, response to perturbation and possibility to modulate during the execution. Modulation properties include both spatial and temporal changes to either discrete or periodic motions. In this paper we evaluate the means of adapting periodic motions using either force or position feedback in order to permanently modify the motion, i. e. learn a new trajectory in order to comply with the conditions of the external environment. We evaluate three different approaches: a modulation approach using repetitive control; and two learning approaches of changing the motion. Simulation results have shown that all three approaches can be used with minor differences amongst them. Tests on a 7DOF KUKA LWR robot have shown that the approaches can be used in the real-world.","PeriodicalId":205930,"journal":{"name":"2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)","volume":"9 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adapting periodic motion primitives to external feedback: Modulating and changing the motion\",\"authors\":\"A. Gams, T. Petrič\",\"doi\":\"10.1109/RAAD.2014.7002228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning and execution of trajectories using dynamic movement primitives (DMPs) incorporates properties, which make them widely accepted and used in synthesizing robotic motions. The properties include fast, robust and numerically undemanding learning on one side, and indirect dependence on time, response to perturbation and possibility to modulate during the execution. Modulation properties include both spatial and temporal changes to either discrete or periodic motions. In this paper we evaluate the means of adapting periodic motions using either force or position feedback in order to permanently modify the motion, i. e. learn a new trajectory in order to comply with the conditions of the external environment. We evaluate three different approaches: a modulation approach using repetitive control; and two learning approaches of changing the motion. Simulation results have shown that all three approaches can be used with minor differences amongst them. Tests on a 7DOF KUKA LWR robot have shown that the approaches can be used in the real-world.\",\"PeriodicalId\":205930,\"journal\":{\"name\":\"2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)\",\"volume\":\"9 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAAD.2014.7002228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAD.2014.7002228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

动态运动原语(dynamic movement primitives, dmp)的轨迹学习和执行包含了一些特性,这使得动态运动原语在机器人运动合成中被广泛接受和应用。其特性一方面包括快速、鲁棒和不需要数值的学习,以及对时间的间接依赖、对扰动的响应和在执行过程中调制的可能性。调制特性包括离散或周期运动的空间和时间变化。在本文中,我们评估了使用力或位置反馈来适应周期运动的方法,以永久地修改运动,即学习新的轨迹以适应外部环境的条件。我们评估了三种不同的方法:使用重复控制的调制方法;以及改变运动的两种学习方法。仿真结果表明,这三种方法都可以使用,它们之间的差异很小。在一个7DOF KUKA LWR机器人上的测试表明,这些方法可以在现实世界中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting periodic motion primitives to external feedback: Modulating and changing the motion
Learning and execution of trajectories using dynamic movement primitives (DMPs) incorporates properties, which make them widely accepted and used in synthesizing robotic motions. The properties include fast, robust and numerically undemanding learning on one side, and indirect dependence on time, response to perturbation and possibility to modulate during the execution. Modulation properties include both spatial and temporal changes to either discrete or periodic motions. In this paper we evaluate the means of adapting periodic motions using either force or position feedback in order to permanently modify the motion, i. e. learn a new trajectory in order to comply with the conditions of the external environment. We evaluate three different approaches: a modulation approach using repetitive control; and two learning approaches of changing the motion. Simulation results have shown that all three approaches can be used with minor differences amongst them. Tests on a 7DOF KUKA LWR robot have shown that the approaches can be used in the real-world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信