利用最小描述长度原理推断概率无循环自动机

Y. Singer, Naftali Tishby
{"title":"利用最小描述长度原理推断概率无循环自动机","authors":"Y. Singer, Naftali Tishby","doi":"10.1109/ISIT.1994.394627","DOIUrl":null,"url":null,"abstract":"The use of Rissanen's (1978) minimum description length principle for the construction of probabilistic acyclic automata (PAA) is explored. We propose a learning algorithm for a PAA that is adaptive both in the structure and the dimension of the model. The proposed algorithm was tested on synthetic data as well as on real pattern recognition problems.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inferring probabilistic acyclic automata using the minimum description length principle\",\"authors\":\"Y. Singer, Naftali Tishby\",\"doi\":\"10.1109/ISIT.1994.394627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Rissanen's (1978) minimum description length principle for the construction of probabilistic acyclic automata (PAA) is explored. We propose a learning algorithm for a PAA that is adaptive both in the structure and the dimension of the model. The proposed algorithm was tested on synthetic data as well as on real pattern recognition problems.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

探讨了利用Rissanen(1978)的最小描述长度原理构造概率无循环自动机(PAA)。我们提出了一种PAA的学习算法,该算法在模型的结构和维度上都是自适应的。该算法在合成数据和实际模式识别问题上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring probabilistic acyclic automata using the minimum description length principle
The use of Rissanen's (1978) minimum description length principle for the construction of probabilistic acyclic automata (PAA) is explored. We propose a learning algorithm for a PAA that is adaptive both in the structure and the dimension of the model. The proposed algorithm was tested on synthetic data as well as on real pattern recognition problems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信