{"title":"利用最小描述长度原理推断概率无循环自动机","authors":"Y. Singer, Naftali Tishby","doi":"10.1109/ISIT.1994.394627","DOIUrl":null,"url":null,"abstract":"The use of Rissanen's (1978) minimum description length principle for the construction of probabilistic acyclic automata (PAA) is explored. We propose a learning algorithm for a PAA that is adaptive both in the structure and the dimension of the model. The proposed algorithm was tested on synthetic data as well as on real pattern recognition problems.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inferring probabilistic acyclic automata using the minimum description length principle\",\"authors\":\"Y. Singer, Naftali Tishby\",\"doi\":\"10.1109/ISIT.1994.394627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Rissanen's (1978) minimum description length principle for the construction of probabilistic acyclic automata (PAA) is explored. We propose a learning algorithm for a PAA that is adaptive both in the structure and the dimension of the model. The proposed algorithm was tested on synthetic data as well as on real pattern recognition problems.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferring probabilistic acyclic automata using the minimum description length principle
The use of Rissanen's (1978) minimum description length principle for the construction of probabilistic acyclic automata (PAA) is explored. We propose a learning algorithm for a PAA that is adaptive both in the structure and the dimension of the model. The proposed algorithm was tested on synthetic data as well as on real pattern recognition problems.<>