超图非环性与可拓保持定理

David Duris
{"title":"超图非环性与可拓保持定理","authors":"David Duris","doi":"10.1109/LICS.2008.12","DOIUrl":null,"url":null,"abstract":"A class of structures satisfies the extension preservation theorem if, on this class, every first order sentence is preserved under extension iff it is equivalent to an existential sentence. We consider different acyclicity notions for hypergraphs (\\gamma, \\beta and \\alpha-acyclicity and also acyclicity on hypergraph quotients) and estimate their influence on the validity of the extension preservation theorem on classes of finite structures. More precisely, we prove that \\gamma-acyclic classes satisfy the extension preservation theorem, whereas \\beta-acyclic classes do not. We also extend the validity of the extension preservation theorem for a generalization of \\gamma-acyclicity that we call \\gamma-acyclic k-quotient. To achieve this, we make a reduction from finite structures to their k-quotients and we use combinatorial arguments on \\gamma-acyclic hypergraphs.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"45 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hypergraph Acyclicity and Extension Preservation Theorems\",\"authors\":\"David Duris\",\"doi\":\"10.1109/LICS.2008.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of structures satisfies the extension preservation theorem if, on this class, every first order sentence is preserved under extension iff it is equivalent to an existential sentence. We consider different acyclicity notions for hypergraphs (\\\\gamma, \\\\beta and \\\\alpha-acyclicity and also acyclicity on hypergraph quotients) and estimate their influence on the validity of the extension preservation theorem on classes of finite structures. More precisely, we prove that \\\\gamma-acyclic classes satisfy the extension preservation theorem, whereas \\\\beta-acyclic classes do not. We also extend the validity of the extension preservation theorem for a generalization of \\\\gamma-acyclicity that we call \\\\gamma-acyclic k-quotient. To achieve this, we make a reduction from finite structures to their k-quotients and we use combinatorial arguments on \\\\gamma-acyclic hypergraphs.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"45 16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一类结构满足可拓保留定理,如果在该类上,每一个一阶句在可拓下都被保留,只要它等价于一个存在句。我们考虑了超图的不同的非环性概念(\gamma, \beta和\alpha -非环性以及超图商上的非环性),并估计了它们对有限结构类上的可拓保持定理有效性的影响。更准确地说,我们证明了\gamma -无环类满足可拓保持定理,而\beta -无环类不满足可拓保持定理。我们还推广了可拓保存定理对于\gamma -无环性的推广的有效性,我们称之为\gamma -无环k商。为了实现这一点,我们将有限结构简化为它们的k商,并在\gamma -无环超图上使用组合参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergraph Acyclicity and Extension Preservation Theorems
A class of structures satisfies the extension preservation theorem if, on this class, every first order sentence is preserved under extension iff it is equivalent to an existential sentence. We consider different acyclicity notions for hypergraphs (\gamma, \beta and \alpha-acyclicity and also acyclicity on hypergraph quotients) and estimate their influence on the validity of the extension preservation theorem on classes of finite structures. More precisely, we prove that \gamma-acyclic classes satisfy the extension preservation theorem, whereas \beta-acyclic classes do not. We also extend the validity of the extension preservation theorem for a generalization of \gamma-acyclicity that we call \gamma-acyclic k-quotient. To achieve this, we make a reduction from finite structures to their k-quotients and we use combinatorial arguments on \gamma-acyclic hypergraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信