基于CAREN扩展系统的老年人步态混沌行为分析

Henryk Josiński, P. Grabiec, Magdalena Pawlyta, K. Wojciechowski, A. Świtoński, A. Michalczuk
{"title":"基于CAREN扩展系统的老年人步态混沌行为分析","authors":"Henryk Josiński, P. Grabiec, Magdalena Pawlyta, K. Wojciechowski, A. Świtoński, A. Michalczuk","doi":"10.1109/HealthCom.2018.8531131","DOIUrl":null,"url":null,"abstract":"The aim of this study was to analyze the presence of chaotic behaviors in gait of elderly subjects (‘65+’) by means of the largest short-term Lyapunov exponent computed for six scenarios which differed with respect to ground inclination, walking speed and optional external perturbation. The largest Lyapunov exponent quantifies the amount of chaos in a time series. The bigger positive Lyapunov exponent value, the greater system’s sensitivity to infinitesimal changes in initial conditions at the beginnings of successive gait cycles and, thus, a chaotic behavior during walking. The time series representing the joint angles of ankle, knee and hip joints were recorded in the CAREN Extended environment using the motion capture technique. Data collected for respective joints were grouped forming for each joint a multivariate time series – input data for calculation of the largest Lyapunov exponent.","PeriodicalId":232709,"journal":{"name":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Chaotic Behaviors in Gait of the Elderly using the CAREN Extended System\",\"authors\":\"Henryk Josiński, P. Grabiec, Magdalena Pawlyta, K. Wojciechowski, A. Świtoński, A. Michalczuk\",\"doi\":\"10.1109/HealthCom.2018.8531131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to analyze the presence of chaotic behaviors in gait of elderly subjects (‘65+’) by means of the largest short-term Lyapunov exponent computed for six scenarios which differed with respect to ground inclination, walking speed and optional external perturbation. The largest Lyapunov exponent quantifies the amount of chaos in a time series. The bigger positive Lyapunov exponent value, the greater system’s sensitivity to infinitesimal changes in initial conditions at the beginnings of successive gait cycles and, thus, a chaotic behavior during walking. The time series representing the joint angles of ankle, knee and hip joints were recorded in the CAREN Extended environment using the motion capture technique. Data collected for respective joints were grouped forming for each joint a multivariate time series – input data for calculation of the largest Lyapunov exponent.\",\"PeriodicalId\":232709,\"journal\":{\"name\":\"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom.2018.8531131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2018.8531131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是分析老年人(65岁以上)步态中存在的混沌行为,通过计算六种不同情况下的最大短期Lyapunov指数,这些情况与地面倾斜度、行走速度和可选的外部扰动有关。最大的李雅普诺夫指数量化了时间序列中混沌的数量。正Lyapunov指数值越大,系统对连续步态周期开始时初始条件的无限小变化的敏感性越高,因此,行走过程中的混沌行为。在CAREN Extended环境下,采用动作捕捉技术记录踝关节、膝关节和髋关节关节角度的时间序列。对各个关节收集的数据进行分组,形成每个关节的多元时间序列-用于计算最大李雅普诺夫指数的输入数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Chaotic Behaviors in Gait of the Elderly using the CAREN Extended System
The aim of this study was to analyze the presence of chaotic behaviors in gait of elderly subjects (‘65+’) by means of the largest short-term Lyapunov exponent computed for six scenarios which differed with respect to ground inclination, walking speed and optional external perturbation. The largest Lyapunov exponent quantifies the amount of chaos in a time series. The bigger positive Lyapunov exponent value, the greater system’s sensitivity to infinitesimal changes in initial conditions at the beginnings of successive gait cycles and, thus, a chaotic behavior during walking. The time series representing the joint angles of ankle, knee and hip joints were recorded in the CAREN Extended environment using the motion capture technique. Data collected for respective joints were grouped forming for each joint a multivariate time series – input data for calculation of the largest Lyapunov exponent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信