{"title":"用于IPM牵引传动的Si和SiC逆变器的比较","authors":"M. Chinthavali, P. Otaduy, B. Ozpineci","doi":"10.1109/ECCE.2010.5618319","DOIUrl":null,"url":null,"abstract":"In this paper a comparison of performance of an hybrid electric vehicle with an all-silicon (Si), hybrid (Si and SiC), and an all-Silicon Carbide (SiC) inverters simulated for the standard US06 driving cycle is presented. The system model includes a motor/generator model, a boost converter model, and an inverter loss model developed using actual measured data. The drive train simulation results will provide an insight to the impact of SiC devices on overall system efficiency gains compared to Si devices over the drive cycle at different operating conditions.","PeriodicalId":161915,"journal":{"name":"2010 IEEE Energy Conversion Congress and Exposition","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Comparison of Si and SiC inverters for IPM traction drive\",\"authors\":\"M. Chinthavali, P. Otaduy, B. Ozpineci\",\"doi\":\"10.1109/ECCE.2010.5618319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a comparison of performance of an hybrid electric vehicle with an all-silicon (Si), hybrid (Si and SiC), and an all-Silicon Carbide (SiC) inverters simulated for the standard US06 driving cycle is presented. The system model includes a motor/generator model, a boost converter model, and an inverter loss model developed using actual measured data. The drive train simulation results will provide an insight to the impact of SiC devices on overall system efficiency gains compared to Si devices over the drive cycle at different operating conditions.\",\"PeriodicalId\":161915,\"journal\":{\"name\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2010.5618319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Energy Conversion Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2010.5618319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Si and SiC inverters for IPM traction drive
In this paper a comparison of performance of an hybrid electric vehicle with an all-silicon (Si), hybrid (Si and SiC), and an all-Silicon Carbide (SiC) inverters simulated for the standard US06 driving cycle is presented. The system model includes a motor/generator model, a boost converter model, and an inverter loss model developed using actual measured data. The drive train simulation results will provide an insight to the impact of SiC devices on overall system efficiency gains compared to Si devices over the drive cycle at different operating conditions.