{"title":"深度神经网络在航空设备故障诊断中的应用与挑战","authors":"Sen Wang, Peng Li, Wei-hua Niu","doi":"10.1117/12.2640466","DOIUrl":null,"url":null,"abstract":"With the development of big data, artificial intelligence and other technologies, data-driven aviation equipment fault diagnosis and prediction technology has gradually become a research hotspot in the aviation field. Many typical intelligent algorithm models have been applied to this field. However, limited by the airborne embedded computing environment, there are still some problems in the deployment of intelligent prediction models represented by deep neural networks on aircraft. This paper summarizes and analyzes the research and application of typical deep neural networks such as convolutional neural networks in the field of aircraft fault diagnosis and prediction. Facing the airborne embedded environment, the current difficulties in deploying the deep neural network algorithm model in the airborne environment are analyzed. The development direction of the application of fault prediction and diagnosis algorithms represented by neural networks in the future is discussed.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application and challenges of deep neural network in fault diagnosis of aviation equipment\",\"authors\":\"Sen Wang, Peng Li, Wei-hua Niu\",\"doi\":\"10.1117/12.2640466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of big data, artificial intelligence and other technologies, data-driven aviation equipment fault diagnosis and prediction technology has gradually become a research hotspot in the aviation field. Many typical intelligent algorithm models have been applied to this field. However, limited by the airborne embedded computing environment, there are still some problems in the deployment of intelligent prediction models represented by deep neural networks on aircraft. This paper summarizes and analyzes the research and application of typical deep neural networks such as convolutional neural networks in the field of aircraft fault diagnosis and prediction. Facing the airborne embedded environment, the current difficulties in deploying the deep neural network algorithm model in the airborne environment are analyzed. The development direction of the application of fault prediction and diagnosis algorithms represented by neural networks in the future is discussed.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2640466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2640466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application and challenges of deep neural network in fault diagnosis of aviation equipment
With the development of big data, artificial intelligence and other technologies, data-driven aviation equipment fault diagnosis and prediction technology has gradually become a research hotspot in the aviation field. Many typical intelligent algorithm models have been applied to this field. However, limited by the airborne embedded computing environment, there are still some problems in the deployment of intelligent prediction models represented by deep neural networks on aircraft. This paper summarizes and analyzes the research and application of typical deep neural networks such as convolutional neural networks in the field of aircraft fault diagnosis and prediction. Facing the airborne embedded environment, the current difficulties in deploying the deep neural network algorithm model in the airborne environment are analyzed. The development direction of the application of fault prediction and diagnosis algorithms represented by neural networks in the future is discussed.