基于粒子群算法和遗传算法的混合进化算法

Xiaohu Shi, Y. H. Lu, Chunguang Zhou, H. Lee, W. Z. Lin, Yanchun Liang
{"title":"基于粒子群算法和遗传算法的混合进化算法","authors":"Xiaohu Shi, Y. H. Lu, Chunguang Zhou, H. Lee, W. Z. Lin, Yanchun Liang","doi":"10.1109/CEC.2003.1299387","DOIUrl":null,"url":null,"abstract":"Inspired by the idea of genetic algorithm, we propose two hybrid evolutionary algorithms based on PSO and GA methods through crossing over the PSO and GA algorithms. The main ideas of the two proposed methods are to integrate PSO and GA methods in parallel and series forms respectively. Simulations for a series of benchmark test functions show that both of the two proposed methods possess better ability to find the global optimum than that of the standard PSO algorithm.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Hybrid evolutionary algorithms based on PSO and GA\",\"authors\":\"Xiaohu Shi, Y. H. Lu, Chunguang Zhou, H. Lee, W. Z. Lin, Yanchun Liang\",\"doi\":\"10.1109/CEC.2003.1299387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the idea of genetic algorithm, we propose two hybrid evolutionary algorithms based on PSO and GA methods through crossing over the PSO and GA algorithms. The main ideas of the two proposed methods are to integrate PSO and GA methods in parallel and series forms respectively. Simulations for a series of benchmark test functions show that both of the two proposed methods possess better ability to find the global optimum than that of the standard PSO algorithm.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

受遗传算法思想的启发,通过对粒子群算法和遗传算法的交叉,提出了两种基于粒子群算法和遗传算法的混合进化算法。提出的两种方法的主要思想是将粒子群算法和遗传算法分别以并联和串联形式进行整合。对一系列基准测试函数的仿真表明,两种方法都比标准粒子群算法具有更好的全局寻优能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid evolutionary algorithms based on PSO and GA
Inspired by the idea of genetic algorithm, we propose two hybrid evolutionary algorithms based on PSO and GA methods through crossing over the PSO and GA algorithms. The main ideas of the two proposed methods are to integrate PSO and GA methods in parallel and series forms respectively. Simulations for a series of benchmark test functions show that both of the two proposed methods possess better ability to find the global optimum than that of the standard PSO algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信