球面和双曲二次曲线

Ivan Izmestiev
{"title":"球面和双曲二次曲线","authors":"Ivan Izmestiev","doi":"10.4171/196-1/15","DOIUrl":null,"url":null,"abstract":"This is a survey of metric properties of non-Euclidean conics, mainly based on works of Chasles and Story. A spherical conic is the intersection of the sphere with a quadratic cone; similarly, a hyperbolic conic is the intersection of the Beltrami-Cayley-Klein disk with an affine conic. Non-Euclidean conics have metric properties similar to those of Euclidean conics, and even more due to the polarity that works here better than in the Euclidean plane.","PeriodicalId":429025,"journal":{"name":"Eighteen Essays in Non-Euclidean Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Spherical and hyperbolic conics\",\"authors\":\"Ivan Izmestiev\",\"doi\":\"10.4171/196-1/15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a survey of metric properties of non-Euclidean conics, mainly based on works of Chasles and Story. A spherical conic is the intersection of the sphere with a quadratic cone; similarly, a hyperbolic conic is the intersection of the Beltrami-Cayley-Klein disk with an affine conic. Non-Euclidean conics have metric properties similar to those of Euclidean conics, and even more due to the polarity that works here better than in the Euclidean plane.\",\"PeriodicalId\":429025,\"journal\":{\"name\":\"Eighteen Essays in Non-Euclidean Geometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighteen Essays in Non-Euclidean Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/196-1/15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteen Essays in Non-Euclidean Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/196-1/15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文主要以查尔斯和斯托里的著作为基础,对非欧几里得二次曲线的度量性质进行了综述。球锥是球与二次锥的交点;类似地,双曲二次曲线是Beltrami-Cayley-Klein圆盘与仿射二次曲线的交点。非欧几里得二次曲线与欧几里得二次曲线具有相似的度规性质,而且由于这里的极性比欧几里得平面更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical and hyperbolic conics
This is a survey of metric properties of non-Euclidean conics, mainly based on works of Chasles and Story. A spherical conic is the intersection of the sphere with a quadratic cone; similarly, a hyperbolic conic is the intersection of the Beltrami-Cayley-Klein disk with an affine conic. Non-Euclidean conics have metric properties similar to those of Euclidean conics, and even more due to the polarity that works here better than in the Euclidean plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信