素数*环上的* -李可导映射的刻画

A. Alkenani, M. Ashraf, B. Wani
{"title":"素数*环上的* -李可导映射的刻画","authors":"A. Alkenani, M. Ashraf, B. Wani","doi":"10.21857/y26kec3379","DOIUrl":null,"url":null,"abstract":"Let R be a ∗-ring containing a nontrivial self-adjoint idempotent. In this paper it is shown that under some mild conditions on R, if a mapping d : R → R satisfies d([U, V ]) = [d(U), V ] + [U, d(V )] for all U, V ∈ R, then there exists ZU,V ∈ Z(R) (depending on U and V ), where Z(R) is the center of R, such that d(U +V ) = d(U) + d(V ) +ZU,V . Moreover, if R is a 2-torsion free prime ∗-ring additionally, then d = ψ+ ξ, where ψ is an additive ∗-derivation of R into its central closure T and ξ is a mapping from R into its extended centroid C such that ξ(U + V ) = ξ(U) + ξ(V ) +ZU,V and ξ([U, V ]) = 0 for all U, V ∈ R. Finally, the above ring theoretic results have been applied to some special classes of algebras such as nest algebras and von Neumann algebras.","PeriodicalId":269525,"journal":{"name":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterizations of ∗-Lie derivable mappings on prime ∗-rings\",\"authors\":\"A. Alkenani, M. Ashraf, B. Wani\",\"doi\":\"10.21857/y26kec3379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a ∗-ring containing a nontrivial self-adjoint idempotent. In this paper it is shown that under some mild conditions on R, if a mapping d : R → R satisfies d([U, V ]) = [d(U), V ] + [U, d(V )] for all U, V ∈ R, then there exists ZU,V ∈ Z(R) (depending on U and V ), where Z(R) is the center of R, such that d(U +V ) = d(U) + d(V ) +ZU,V . Moreover, if R is a 2-torsion free prime ∗-ring additionally, then d = ψ+ ξ, where ψ is an additive ∗-derivation of R into its central closure T and ξ is a mapping from R into its extended centroid C such that ξ(U + V ) = ξ(U) + ξ(V ) +ZU,V and ξ([U, V ]) = 0 for all U, V ∈ R. Finally, the above ring theoretic results have been applied to some special classes of algebras such as nest algebras and von Neumann algebras.\",\"PeriodicalId\":269525,\"journal\":{\"name\":\"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21857/y26kec3379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21857/y26kec3379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设R是一个含有非平凡自伴随幂等的*环。本文证明了在R上的一些温和条件下,如果映射d: R→R满足d([U, V]) = [d(U), V] + [U, d(V)],对于所有U,V∈R,则存在ZU,V∈Z(R)(取决于U和V),其中Z(R)是R的中心,使得d(U +V) = d(U) + d(V) +ZU,V。此外,如果R是2-torsion自由'∗撕咬此外,然后d =ψ+ξ,ψ是一个添加剂∗推导R的中央关闭T和ξ是R的映射到扩展质心C,ξ(U + V) =ξ(U) +ξ(V) +祖茂堂,V和ξ([U, V]) = 0的所有U, V∈R .最后,上面的环理论结果应用于一些特殊类型的代数套代数和冯·诺依曼代数等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of ∗-Lie derivable mappings on prime ∗-rings
Let R be a ∗-ring containing a nontrivial self-adjoint idempotent. In this paper it is shown that under some mild conditions on R, if a mapping d : R → R satisfies d([U, V ]) = [d(U), V ] + [U, d(V )] for all U, V ∈ R, then there exists ZU,V ∈ Z(R) (depending on U and V ), where Z(R) is the center of R, such that d(U +V ) = d(U) + d(V ) +ZU,V . Moreover, if R is a 2-torsion free prime ∗-ring additionally, then d = ψ+ ξ, where ψ is an additive ∗-derivation of R into its central closure T and ξ is a mapping from R into its extended centroid C such that ξ(U + V ) = ξ(U) + ξ(V ) +ZU,V and ξ([U, V ]) = 0 for all U, V ∈ R. Finally, the above ring theoretic results have been applied to some special classes of algebras such as nest algebras and von Neumann algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信