组中字长一致限定的元素

Yanis Amirou
{"title":"组中字长一致限定的元素","authors":"Yanis Amirou","doi":"10.4171/lem/1002","DOIUrl":null,"url":null,"abstract":"We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group $G$, we denote this subgroup $G_{bound}$. We give sufficient criteria for triviality and finiteness of $G_{bound}$. We prove that if $G$ is virtually abelian then $G_{bound}$ is finite. In contrast with numerous examples where $G_{bound}$ is trivial, we show that for every finite group $A$, there exists an infinite group $G$ with $G_{bound}=A$. This group $G$ can be chosen among torsion groups. We also study the group $G_{bound}(d)$ of elements with uniformly bounded word-length for generating sets of cardinality less than $d$.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elements of uniformly bounded word-length in groups\",\"authors\":\"Yanis Amirou\",\"doi\":\"10.4171/lem/1002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group $G$, we denote this subgroup $G_{bound}$. We give sufficient criteria for triviality and finiteness of $G_{bound}$. We prove that if $G$ is virtually abelian then $G_{bound}$ is finite. In contrast with numerous examples where $G_{bound}$ is trivial, we show that for every finite group $A$, there exists an infinite group $G$ with $G_{bound}=A$. This group $G$ can be chosen among torsion groups. We also study the group $G_{bound}(d)$ of elements with uniformly bounded word-length for generating sets of cardinality less than $d$.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有限生成群的一个特征子群,它由具有统一上界的字长元素组成。对于群$G$,我们表示这个子群$G_{bound}$。给出了$G_{bound}$的平凡性和有限性的充分判据。证明了如果$G$是虚阿贝尔的,则$G_{界}$是有限的。短句来源与许多G_{bound}$是平凡的例子相比,我们证明了对于每一个有限群$A$,存在一个无限群$G$且$G_{bound}=A$。这个群$G$可以在扭转群中选择。对于基数小于$d$的生成集,我们还研究了具有一致有界字长元素的组$G_{bound}(d)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elements of uniformly bounded word-length in groups
We study a characteristic subgroup of finitely generated groups, consisting of elements with uniform upper bound for word-lengths. For a group $G$, we denote this subgroup $G_{bound}$. We give sufficient criteria for triviality and finiteness of $G_{bound}$. We prove that if $G$ is virtually abelian then $G_{bound}$ is finite. In contrast with numerous examples where $G_{bound}$ is trivial, we show that for every finite group $A$, there exists an infinite group $G$ with $G_{bound}=A$. This group $G$ can be chosen among torsion groups. We also study the group $G_{bound}(d)$ of elements with uniformly bounded word-length for generating sets of cardinality less than $d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信