基于时间上下文的协同过滤算法恒定预测时间的比较

Sumet Darapisut, J. Suksawatchon
{"title":"基于时间上下文的协同过滤算法恒定预测时间的比较","authors":"Sumet Darapisut, J. Suksawatchon","doi":"10.1109/JCSSE.2014.6841885","DOIUrl":null,"url":null,"abstract":"This research presents the comparison of collaborative filtering techniques which are Tendencies Based Algorithm, Item mean algorithm, and Simple mean based algorithm. All these algorithms use the constant time in prediction process. To evaluate our proposed model, we use last.fm dataset including music listening history of each user. Each user's profile is split into several sub-profiles based on specified time ranges called “Time Contexts”. Thus the prediction is done using these Time Contexts instead of a single user profile. From our experiments, we have found that Tendencies Based Algorithm with Time Contexts is effective. It is given more accuracy and much more efficient computationally than tradition collaborative filtering algorithms.","PeriodicalId":331610,"journal":{"name":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of the constant prediction time of collaborative filtering algorithms by using time contexts\",\"authors\":\"Sumet Darapisut, J. Suksawatchon\",\"doi\":\"10.1109/JCSSE.2014.6841885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents the comparison of collaborative filtering techniques which are Tendencies Based Algorithm, Item mean algorithm, and Simple mean based algorithm. All these algorithms use the constant time in prediction process. To evaluate our proposed model, we use last.fm dataset including music listening history of each user. Each user's profile is split into several sub-profiles based on specified time ranges called “Time Contexts”. Thus the prediction is done using these Time Contexts instead of a single user profile. From our experiments, we have found that Tendencies Based Algorithm with Time Contexts is effective. It is given more accuracy and much more efficient computationally than tradition collaborative filtering algorithms.\",\"PeriodicalId\":331610,\"journal\":{\"name\":\"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2014.6841885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2014.6841885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文比较了基于趋势的协同过滤算法、项均值算法和基于简单均值的协同过滤算法。这些算法在预测过程中都使用了常数时间。为了评估我们提出的模型,我们使用。FM数据集包括每个用户的音乐收听历史。每个用户的配置文件根据指定的时间范围(称为“时间上下文”)分成几个子配置文件。因此,预测是使用这些时间上下文而不是单个用户配置文件完成的。通过实验,我们发现基于时间背景的趋势算法是有效的。与传统的协同过滤算法相比,该算法具有更高的精度和更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the constant prediction time of collaborative filtering algorithms by using time contexts
This research presents the comparison of collaborative filtering techniques which are Tendencies Based Algorithm, Item mean algorithm, and Simple mean based algorithm. All these algorithms use the constant time in prediction process. To evaluate our proposed model, we use last.fm dataset including music listening history of each user. Each user's profile is split into several sub-profiles based on specified time ranges called “Time Contexts”. Thus the prediction is done using these Time Contexts instead of a single user profile. From our experiments, we have found that Tendencies Based Algorithm with Time Contexts is effective. It is given more accuracy and much more efficient computationally than tradition collaborative filtering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信