{"title":"学校的标准使用基于设施、教育工作者和教育工作者的k -手段算法","authors":"Nurahman Nurahman, Agung Purwanto, Sigit Mulyanto","doi":"10.30812/matrik.v21i2.1411","DOIUrl":null,"url":null,"abstract":"Fasilitas pendidikan merupakan salah satu indikator untuk tercapainya capaian pembelajaran di sekolah. Keberadaan fasilitas, guru, dan tenaga pendidik sangat dibutuhkan pada lingkungan sekolah. Untuk memudahkan pemerintah setempat dalam penanganan pemerataan kebutuhan sekolah, maka diperlukan pengklasteran atau pengelompokan sekolah. Tujuan dari penelitian ini adalah membantu pihak pemerintah dalam mengklaster sekolah tertentu menjadi beberapa cluster, sehingga memudahkan untuk melakukan pendampingan maupun pengadaan kebutuhan sekolah dilingkungan pemerintah Kabupaten Seruyan. Klasterisasi dilakukan dengan menggunakan algoritma K-Means. Penerapan Algoritma K-Means dengan menentukan nilai Cluster yaitu 3. Hasil penelitian menunjukan bahwa setiap Cluster memiliki jumlah keanggotaannya masing-masing. Pada Cluster0 terdiri dari 178 sekolah, Cluster1 terdiri dari 3 sekolah, dan Cluster2 terdiri dari 43 sekolah. Kemudian hasil pemeringkatan Cluster secara berurutan diperoleh dari Cluster1, Cluster0, dan terakhir adalah Cluster2. Selanjutnya dalam pengujian performance algoritma K-Means dengan membagi menjadi 3 Cluster diperoleh nilai Davies Bouldin Index senilai -0,695. Dari hasil pegolahan dan analisis data terdapat 43 sekolah dalam cluster rendah, sehingga penelitian ini merekomendasikan perlu dilakukan pendampingan dan pengadaan kebutuhan sekolah terhadap sekolah cluster rendah oleh dinas pendidikan pada pemerintah kabupaten Seruyan.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik\",\"authors\":\"Nurahman Nurahman, Agung Purwanto, Sigit Mulyanto\",\"doi\":\"10.30812/matrik.v21i2.1411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fasilitas pendidikan merupakan salah satu indikator untuk tercapainya capaian pembelajaran di sekolah. Keberadaan fasilitas, guru, dan tenaga pendidik sangat dibutuhkan pada lingkungan sekolah. Untuk memudahkan pemerintah setempat dalam penanganan pemerataan kebutuhan sekolah, maka diperlukan pengklasteran atau pengelompokan sekolah. Tujuan dari penelitian ini adalah membantu pihak pemerintah dalam mengklaster sekolah tertentu menjadi beberapa cluster, sehingga memudahkan untuk melakukan pendampingan maupun pengadaan kebutuhan sekolah dilingkungan pemerintah Kabupaten Seruyan. Klasterisasi dilakukan dengan menggunakan algoritma K-Means. Penerapan Algoritma K-Means dengan menentukan nilai Cluster yaitu 3. Hasil penelitian menunjukan bahwa setiap Cluster memiliki jumlah keanggotaannya masing-masing. Pada Cluster0 terdiri dari 178 sekolah, Cluster1 terdiri dari 3 sekolah, dan Cluster2 terdiri dari 43 sekolah. Kemudian hasil pemeringkatan Cluster secara berurutan diperoleh dari Cluster1, Cluster0, dan terakhir adalah Cluster2. Selanjutnya dalam pengujian performance algoritma K-Means dengan membagi menjadi 3 Cluster diperoleh nilai Davies Bouldin Index senilai -0,695. Dari hasil pegolahan dan analisis data terdapat 43 sekolah dalam cluster rendah, sehingga penelitian ini merekomendasikan perlu dilakukan pendampingan dan pengadaan kebutuhan sekolah terhadap sekolah cluster rendah oleh dinas pendidikan pada pemerintah kabupaten Seruyan.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v21i2.1411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i2.1411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik
Fasilitas pendidikan merupakan salah satu indikator untuk tercapainya capaian pembelajaran di sekolah. Keberadaan fasilitas, guru, dan tenaga pendidik sangat dibutuhkan pada lingkungan sekolah. Untuk memudahkan pemerintah setempat dalam penanganan pemerataan kebutuhan sekolah, maka diperlukan pengklasteran atau pengelompokan sekolah. Tujuan dari penelitian ini adalah membantu pihak pemerintah dalam mengklaster sekolah tertentu menjadi beberapa cluster, sehingga memudahkan untuk melakukan pendampingan maupun pengadaan kebutuhan sekolah dilingkungan pemerintah Kabupaten Seruyan. Klasterisasi dilakukan dengan menggunakan algoritma K-Means. Penerapan Algoritma K-Means dengan menentukan nilai Cluster yaitu 3. Hasil penelitian menunjukan bahwa setiap Cluster memiliki jumlah keanggotaannya masing-masing. Pada Cluster0 terdiri dari 178 sekolah, Cluster1 terdiri dari 3 sekolah, dan Cluster2 terdiri dari 43 sekolah. Kemudian hasil pemeringkatan Cluster secara berurutan diperoleh dari Cluster1, Cluster0, dan terakhir adalah Cluster2. Selanjutnya dalam pengujian performance algoritma K-Means dengan membagi menjadi 3 Cluster diperoleh nilai Davies Bouldin Index senilai -0,695. Dari hasil pegolahan dan analisis data terdapat 43 sekolah dalam cluster rendah, sehingga penelitian ini merekomendasikan perlu dilakukan pendampingan dan pengadaan kebutuhan sekolah terhadap sekolah cluster rendah oleh dinas pendidikan pada pemerintah kabupaten Seruyan.