集合布谷鸟搜索双聚类的基因表达数据

Lu Yin, Yongguo Liu
{"title":"集合布谷鸟搜索双聚类的基因表达数据","authors":"Lu Yin, Yongguo Liu","doi":"10.1109/ICCI-CC.2016.7862071","DOIUrl":null,"url":null,"abstract":"Many biclustering algorithms have been proposed in analyzing the gene expression data and ensemble biclustering methods can improve performance of the biclustering algorithm. We propose a new method of obtaining a variety of constituent biclusters which use different quality measures of bicluster. To demonstrate the efficiency of our methods, experiment on six real gene expression data shows the diversity and biological significance of the biclusters obtained by our methods are higher than that of the compared methods.","PeriodicalId":135701,"journal":{"name":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ensemble cuckoo search biclustering of the gene expression data\",\"authors\":\"Lu Yin, Yongguo Liu\",\"doi\":\"10.1109/ICCI-CC.2016.7862071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many biclustering algorithms have been proposed in analyzing the gene expression data and ensemble biclustering methods can improve performance of the biclustering algorithm. We propose a new method of obtaining a variety of constituent biclusters which use different quality measures of bicluster. To demonstrate the efficiency of our methods, experiment on six real gene expression data shows the diversity and biological significance of the biclusters obtained by our methods are higher than that of the compared methods.\",\"PeriodicalId\":135701,\"journal\":{\"name\":\"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2016.7862071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2016.7862071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基因表达数据分析中,已经提出了许多双聚类算法,集成双聚类方法可以提高算法的性能。我们提出了一种利用不同的双聚类质量度量来获得各种组成双聚类的新方法。通过对6个真实基因表达数据的实验表明,我们的方法获得的双聚类的多样性和生物学意义都高于比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble cuckoo search biclustering of the gene expression data
Many biclustering algorithms have been proposed in analyzing the gene expression data and ensemble biclustering methods can improve performance of the biclustering algorithm. We propose a new method of obtaining a variety of constituent biclusters which use different quality measures of bicluster. To demonstrate the efficiency of our methods, experiment on six real gene expression data shows the diversity and biological significance of the biclusters obtained by our methods are higher than that of the compared methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信