使用DWT和PCA的有效性别分类方法

S. Khan, Muhammad Nazir, Nawazish Naveed, Naveed Riaz
{"title":"使用DWT和PCA的有效性别分类方法","authors":"S. Khan, Muhammad Nazir, Nawazish Naveed, Naveed Riaz","doi":"10.1109/INMIC.2011.6151462","DOIUrl":null,"url":null,"abstract":"Recognition of gender from face images has accomplished great popularity and also enlightened some new research problems. In this paper, we presented a new technique for gender classification using DWT and PCA. The technique has shown performance better than existing gender classification techniques. Experiments were carried out on standard face database used in various existing works of literature. Our proposed method provides high accuracy and is resilient to brightness changes comparison to those techniques which are in practice.","PeriodicalId":207616,"journal":{"name":"2011 IEEE 14th International Multitopic Conference","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient gender classification methodology using DWT and PCA\",\"authors\":\"S. Khan, Muhammad Nazir, Nawazish Naveed, Naveed Riaz\",\"doi\":\"10.1109/INMIC.2011.6151462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of gender from face images has accomplished great popularity and also enlightened some new research problems. In this paper, we presented a new technique for gender classification using DWT and PCA. The technique has shown performance better than existing gender classification techniques. Experiments were carried out on standard face database used in various existing works of literature. Our proposed method provides high accuracy and is resilient to brightness changes comparison to those techniques which are in practice.\",\"PeriodicalId\":207616,\"journal\":{\"name\":\"2011 IEEE 14th International Multitopic Conference\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 14th International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2011.6151462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 14th International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2011.6151462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人脸图像的性别识别在获得广泛应用的同时,也引发了一些新的研究问题。本文提出了一种基于小波变换和主成分分析的性别分类方法。该技术的性能优于现有的性别分类技术。实验采用标准人脸数据库,应用于已有的多部文献。与现有的方法相比,该方法具有较高的精度和较强的抗亮度变化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient gender classification methodology using DWT and PCA
Recognition of gender from face images has accomplished great popularity and also enlightened some new research problems. In this paper, we presented a new technique for gender classification using DWT and PCA. The technique has shown performance better than existing gender classification techniques. Experiments were carried out on standard face database used in various existing works of literature. Our proposed method provides high accuracy and is resilient to brightness changes comparison to those techniques which are in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信