max-NLMS自适应滤波器的分析与实现

S. Douglas
{"title":"max-NLMS自适应滤波器的分析与实现","authors":"S. Douglas","doi":"10.1109/ACSSC.1995.540631","DOIUrl":null,"url":null,"abstract":"We provide an efficient implementation and a statistical analysis of the max-NLMS adaptive filter. This adaptive filter only adjusts the coefficient associated with the data element that has the maximum absolute value in the filter memory at each iteration. Our method for determining this maximum absolute data value requires many fewer compares and storage locations on average as compared to other techniques. We then provide statistical and stability analyses of the max-NLMS algorithm for several input data models. Theory and simulations show that the max-NLMS adaptive filter is statistically more efficient than other adaptive filters with similar computational complexity for some input signals; however, its stability behavior is very sensitive to skew in the input data probability distribution.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"659 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Analysis and implementation of the max-NLMS adaptive filter\",\"authors\":\"S. Douglas\",\"doi\":\"10.1109/ACSSC.1995.540631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an efficient implementation and a statistical analysis of the max-NLMS adaptive filter. This adaptive filter only adjusts the coefficient associated with the data element that has the maximum absolute value in the filter memory at each iteration. Our method for determining this maximum absolute data value requires many fewer compares and storage locations on average as compared to other techniques. We then provide statistical and stability analyses of the max-NLMS algorithm for several input data models. Theory and simulations show that the max-NLMS adaptive filter is statistically more efficient than other adaptive filters with similar computational complexity for some input signals; however, its stability behavior is very sensitive to skew in the input data probability distribution.\",\"PeriodicalId\":171264,\"journal\":{\"name\":\"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"659 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1995.540631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

我们提供了一个有效的实现和统计分析的最大nlms自适应滤波器。这个自适应过滤器在每次迭代时只调整与过滤器内存中具有最大绝对值的数据元素相关的系数。与其他技术相比,我们确定这个最大绝对数据值的方法平均需要的比较和存储位置要少得多。然后,我们为几个输入数据模型提供了max-NLMS算法的统计和稳定性分析。理论和仿真结果表明,对于某些输入信号,max-NLMS自适应滤波器在统计效率上优于其他计算复杂度相近的自适应滤波器;但其稳定性对输入数据概率分布的偏态非常敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and implementation of the max-NLMS adaptive filter
We provide an efficient implementation and a statistical analysis of the max-NLMS adaptive filter. This adaptive filter only adjusts the coefficient associated with the data element that has the maximum absolute value in the filter memory at each iteration. Our method for determining this maximum absolute data value requires many fewer compares and storage locations on average as compared to other techniques. We then provide statistical and stability analyses of the max-NLMS algorithm for several input data models. Theory and simulations show that the max-NLMS adaptive filter is statistically more efficient than other adaptive filters with similar computational complexity for some input signals; however, its stability behavior is very sensitive to skew in the input data probability distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信