基于群的入侵行为知识发现

Xiaohui Cui, Justin M. Beaver, T. Potok
{"title":"基于群的入侵行为知识发现","authors":"Xiaohui Cui, Justin M. Beaver, T. Potok","doi":"10.1109/CYBERC.2010.56","DOIUrl":null,"url":null,"abstract":"In this research, we developed a technique, the Swarm-based Visual Data Mining approach (SVDM), that will help user to gain insight into the Intrusion Detection System (IDS) alert event data stream, come up with new hypothesis, and verify the hypothesis via the interaction between the human and the system. This novel malicious user detection system can efficiently help security officer detect anomaly behaviors of malicious user in the high dimensional time dependent state spaces. This system's visual representations exploit the human being's innate ability to recognize patterns and utilize this ability to help security manager understand the relationships between seemingly discrete security breaches.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Swarm-Based Knowledge Discovery for Intrusion Behavior Discovering\",\"authors\":\"Xiaohui Cui, Justin M. Beaver, T. Potok\",\"doi\":\"10.1109/CYBERC.2010.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we developed a technique, the Swarm-based Visual Data Mining approach (SVDM), that will help user to gain insight into the Intrusion Detection System (IDS) alert event data stream, come up with new hypothesis, and verify the hypothesis via the interaction between the human and the system. This novel malicious user detection system can efficiently help security officer detect anomaly behaviors of malicious user in the high dimensional time dependent state spaces. This system's visual representations exploit the human being's innate ability to recognize patterns and utilize this ability to help security manager understand the relationships between seemingly discrete security breaches.\",\"PeriodicalId\":315132,\"journal\":{\"name\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2010.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们开发了一种技术,即基于群的可视化数据挖掘方法(SVDM),它将帮助用户深入了解入侵检测系统(IDS)的警报事件数据流,提出新的假设,并通过人与系统之间的交互来验证假设。该系统能够有效地帮助安全人员在高维时变状态空间中检测出恶意用户的异常行为。该系统的可视化表示利用了人类固有的识别模式的能力,并利用这种能力帮助安全管理人员理解看似离散的安全漏洞之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarm-Based Knowledge Discovery for Intrusion Behavior Discovering
In this research, we developed a technique, the Swarm-based Visual Data Mining approach (SVDM), that will help user to gain insight into the Intrusion Detection System (IDS) alert event data stream, come up with new hypothesis, and verify the hypothesis via the interaction between the human and the system. This novel malicious user detection system can efficiently help security officer detect anomaly behaviors of malicious user in the high dimensional time dependent state spaces. This system's visual representations exploit the human being's innate ability to recognize patterns and utilize this ability to help security manager understand the relationships between seemingly discrete security breaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信