混合维的剪子同余

T. Goodwillie
{"title":"混合维的剪子同余","authors":"T. Goodwillie","doi":"10.1090/conm/682/13806","DOIUrl":null,"url":null,"abstract":"We introduce a Grothendieck group $E_n$ for bounded polytopes in $\\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scissors Congruence with Mixed Dimensions\",\"authors\":\"T. Goodwillie\",\"doi\":\"10.1090/conm/682/13806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Grothendieck group $E_n$ for bounded polytopes in $\\\\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/682/13806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/682/13806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了$\mathbb R^n$中有界多面体的Grothendieck群$E_n$。它与通常的欧氏剪子同余群的不同之处在于低维多面体不被忽略。我们还利用点上的多体胚定义了一个类似的群$L_n$,它与球剪同余有关。这为Dehn不变量的泛化提供了一个设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scissors Congruence with Mixed Dimensions
We introduce a Grothendieck group $E_n$ for bounded polytopes in $\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信