{"title":"混合维的剪子同余","authors":"T. Goodwillie","doi":"10.1090/conm/682/13806","DOIUrl":null,"url":null,"abstract":"We introduce a Grothendieck group $E_n$ for bounded polytopes in $\\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scissors Congruence with Mixed Dimensions\",\"authors\":\"T. Goodwillie\",\"doi\":\"10.1090/conm/682/13806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Grothendieck group $E_n$ for bounded polytopes in $\\\\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/682/13806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/682/13806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a Grothendieck group $E_n$ for bounded polytopes in $\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.