基于语义相似度的情感挖掘

Rafiya Jan, Afaq Alam Khan
{"title":"基于语义相似度的情感挖掘","authors":"Rafiya Jan, Afaq Alam Khan","doi":"10.4018/IJSE.2018070101","DOIUrl":null,"url":null,"abstract":"Social networks are considered as the most abundant sources of affective information for sentiment and emotion classification. Emotion classification is the challenging task of classifying emotions into different types. Emotions being universal, the automatic exploration of emotion is considered as a difficult task to perform. A lot of the research is being conducted in the field of automatic emotion detection in textual data streams. However, very little attention is paid towards capturing semantic features of the text. In this article, the authors present the technique of semantic relatedness for automatic classification of emotion in the text using distributional semantic models. This approach uses semantic similarity for measuring the coherence between the two emotionally related entities. Before classification, data is pre-processed to remove the irrelevant fields and inconsistencies and to improve the performance. The proposed approach achieved the accuracy of 71.795%, which is competitive considering as no training or annotation of data is done.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"27 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Emotion Mining Using Semantic Similarity\",\"authors\":\"Rafiya Jan, Afaq Alam Khan\",\"doi\":\"10.4018/IJSE.2018070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks are considered as the most abundant sources of affective information for sentiment and emotion classification. Emotion classification is the challenging task of classifying emotions into different types. Emotions being universal, the automatic exploration of emotion is considered as a difficult task to perform. A lot of the research is being conducted in the field of automatic emotion detection in textual data streams. However, very little attention is paid towards capturing semantic features of the text. In this article, the authors present the technique of semantic relatedness for automatic classification of emotion in the text using distributional semantic models. This approach uses semantic similarity for measuring the coherence between the two emotionally related entities. Before classification, data is pre-processed to remove the irrelevant fields and inconsistencies and to improve the performance. The proposed approach achieved the accuracy of 71.795%, which is competitive considering as no training or annotation of data is done.\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"27 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSE.2018070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2018070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

社交网络被认为是情感和情感分类最丰富的情感信息来源。情绪分类是一项具有挑战性的任务,它将情绪分为不同的类型。情绪是普遍的,对情绪的自动探索被认为是一项困难的任务。在文本数据流中的自动情感检测领域进行了大量的研究。然而,很少有人注意捕捉文本的语义特征。在本文中,作者提出了一种基于语义关联的分布式语义模型的文本情感自动分类技术。该方法使用语义相似度来衡量两个情感相关实体之间的一致性。在分类之前,对数据进行预处理,去除不相关字段和不一致字段,提高性能。该方法的准确率为71.795%,考虑到没有对数据进行训练和标注,具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion Mining Using Semantic Similarity
Social networks are considered as the most abundant sources of affective information for sentiment and emotion classification. Emotion classification is the challenging task of classifying emotions into different types. Emotions being universal, the automatic exploration of emotion is considered as a difficult task to perform. A lot of the research is being conducted in the field of automatic emotion detection in textual data streams. However, very little attention is paid towards capturing semantic features of the text. In this article, the authors present the technique of semantic relatedness for automatic classification of emotion in the text using distributional semantic models. This approach uses semantic similarity for measuring the coherence between the two emotionally related entities. Before classification, data is pre-processed to remove the irrelevant fields and inconsistencies and to improve the performance. The proposed approach achieved the accuracy of 71.795%, which is competitive considering as no training or annotation of data is done.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信