与全λ -微积分同构的无穷仿射λ -微积分

Damiano Mazza
{"title":"与全λ -微积分同构的无穷仿射λ -微积分","authors":"Damiano Mazza","doi":"10.1109/LICS.2012.57","DOIUrl":null,"url":null,"abstract":"It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus. This paper proposes a technical realization of this idea: an affine lambda-calculus is introduced, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; the completion of this space is shown to yield an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability).","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus\",\"authors\":\"Damiano Mazza\",\"doi\":\"10.1109/LICS.2012.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus. This paper proposes a technical realization of this idea: an affine lambda-calculus is introduced, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; the completion of this space is shown to yield an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability).\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

众所周知,实数是由有理数的度规完备而产生的,而度规是由通常的绝对值引起的。我们寻求这种现象的计算版本,并认为理数的作用应该由仿射λ演算来扮演,它的动力学是有限的;完整的λ演算应该是仿射λ演算的一个合适的度量补全。本文提出了这一思想的技术实现:基于直觉乘法线性逻辑的片段,引入了仿射λ演算;微积分被赋予了距离的概念,使得一组项成为不完全度量空间;该空间的补全得到了一个无限仿射λ -微积分,其商在适当的偏等价关系下恰好是满(非仿射)λ -微积分。我们还展示了这种构造如何给lambda微积分的一些标准重写性质(有限展开、合流、标准化、头归一化和可解性)带来有趣的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus
It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus. This paper proposes a technical realization of this idea: an affine lambda-calculus is introduced, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; the completion of this space is shown to yield an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信