社交游戏框架下需求反应强化学习的前瞻性实验

Lucas Spangher, Akash Gokul, Manan Khattar, Joseph Palakapilly, A. Tawade, Adam Bouyamourn, Alex Devonport, C. Spanos
{"title":"社交游戏框架下需求反应强化学习的前瞻性实验","authors":"Lucas Spangher, Akash Gokul, Manan Khattar, Joseph Palakapilly, A. Tawade, Adam Bouyamourn, Alex Devonport, C. Spanos","doi":"10.1145/3396851.3402365","DOIUrl":null,"url":null,"abstract":"Improving demand response can help optimize renewable energy use and might be possible using current tools in machine learning. We propose an experiment to test the development of Reinforcement Learning (RL) agents to learn to vary a daily grid price signal to optimize behavioral energy shift in office workers. We describe our application of Batch Constrained Q Learning and Soft Actor Critic (SAC) as RL agents and Social Cognitive Theory, LSTM networks, and linear regression as planning models. We report limited success within simulation with SAC and linear regression. Finally, we propose an experiment timeline for consideration.","PeriodicalId":442966,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","volume":"36 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Prospective Experiment for Reinforcement Learning on Demand Response in a Social Game Framework\",\"authors\":\"Lucas Spangher, Akash Gokul, Manan Khattar, Joseph Palakapilly, A. Tawade, Adam Bouyamourn, Alex Devonport, C. Spanos\",\"doi\":\"10.1145/3396851.3402365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving demand response can help optimize renewable energy use and might be possible using current tools in machine learning. We propose an experiment to test the development of Reinforcement Learning (RL) agents to learn to vary a daily grid price signal to optimize behavioral energy shift in office workers. We describe our application of Batch Constrained Q Learning and Soft Actor Critic (SAC) as RL agents and Social Cognitive Theory, LSTM networks, and linear regression as planning models. We report limited success within simulation with SAC and linear regression. Finally, we propose an experiment timeline for consideration.\",\"PeriodicalId\":442966,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Future Energy Systems\",\"volume\":\"36 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Future Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3396851.3402365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396851.3402365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

改善需求响应可以帮助优化可再生能源的使用,并且可以使用当前的机器学习工具。我们提出了一个实验来测试强化学习(RL)代理的发展,以学习改变每日电网价格信号以优化办公室员工的行为能量转移。我们将批约束Q学习和软演员评论家(SAC)的应用描述为RL代理,将社会认知理论、LSTM网络和线性回归描述为规划模型。我们报告了在SAC和线性回归的模拟中有限的成功。最后,我们提出了一个实验时间表供考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospective Experiment for Reinforcement Learning on Demand Response in a Social Game Framework
Improving demand response can help optimize renewable energy use and might be possible using current tools in machine learning. We propose an experiment to test the development of Reinforcement Learning (RL) agents to learn to vary a daily grid price signal to optimize behavioral energy shift in office workers. We describe our application of Batch Constrained Q Learning and Soft Actor Critic (SAC) as RL agents and Social Cognitive Theory, LSTM networks, and linear regression as planning models. We report limited success within simulation with SAC and linear regression. Finally, we propose an experiment timeline for consideration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信