基于神经模糊模型的非线性系统自适应预测器控制

Jinglu Hu, K. Hirasawa, K. Kumamaru
{"title":"基于神经模糊模型的非线性系统自适应预测器控制","authors":"Jinglu Hu, K. Hirasawa, K. Kumamaru","doi":"10.23919/ECC.1999.7100016","DOIUrl":null,"url":null,"abstract":"This paper proposes a general nonlinear adaptive predictor using a class of neurofuzzy models. The obtained predictor may be seen as a linear predictor network consisting of a global linear predictor and several local linear predictors with interpolation. It has distinctive features as well as good prediction ability: its parameters have explicit meanings useful for initial values setting: it may be transformed into a form linear for the variables synthesized in control systems, making deriving a control law straightforward.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Adaptive predictor for control of nonlinear systems based on neurofuzzy models\",\"authors\":\"Jinglu Hu, K. Hirasawa, K. Kumamaru\",\"doi\":\"10.23919/ECC.1999.7100016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a general nonlinear adaptive predictor using a class of neurofuzzy models. The obtained predictor may be seen as a linear predictor network consisting of a global linear predictor and several local linear predictors with interpolation. It has distinctive features as well as good prediction ability: its parameters have explicit meanings useful for initial values setting: it may be transformed into a form linear for the variables synthesized in control systems, making deriving a control law straightforward.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7100016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7100016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文利用一类神经模糊模型提出了一种通用的非线性自适应预测器。所得到的预测器可以看作是一个线性预测网络,由一个全局线性预测器和若干个带插值的局部线性预测器组成。它具有鲜明的特点和良好的预测能力:它的参数具有明确的意义,对初始值的设置很有用;它可以将控制系统中合成的变量转化为线性形式,使控制律的推导变得简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive predictor for control of nonlinear systems based on neurofuzzy models
This paper proposes a general nonlinear adaptive predictor using a class of neurofuzzy models. The obtained predictor may be seen as a linear predictor network consisting of a global linear predictor and several local linear predictors with interpolation. It has distinctive features as well as good prediction ability: its parameters have explicit meanings useful for initial values setting: it may be transformed into a form linear for the variables synthesized in control systems, making deriving a control law straightforward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信