标量,一种改进gadc方法多目标预测的方法

D. Devogelaere, M. Rijckaert
{"title":"标量,一种改进gadc方法多目标预测的方法","authors":"D. Devogelaere, M. Rijckaert","doi":"10.1109/SBRN.2000.889713","DOIUrl":null,"url":null,"abstract":"This paper describes a hybrid method for supervised training of multivariate regression systems. The proposed methodology relies on supervised clustering with genetic algorithms and local learning. Genetic algorithm driven clustering (GAdC) offers certain advantages related to robustness, generalization performance, feature selection, explanatory behavior and the additional flexibility of defining the error function and the regularization constraints. In this contribution we present the use of GAdC for prediction of algae distributions. We highlight one of the advantages of this method namely, the use of scalars to obtain the sequence in which the prediction of algae distributions should be calculated. Using this sequence leads to an improvement of the prediction.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scalars, a way to improve the multi-objective prediction of the GAdC-method\",\"authors\":\"D. Devogelaere, M. Rijckaert\",\"doi\":\"10.1109/SBRN.2000.889713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a hybrid method for supervised training of multivariate regression systems. The proposed methodology relies on supervised clustering with genetic algorithms and local learning. Genetic algorithm driven clustering (GAdC) offers certain advantages related to robustness, generalization performance, feature selection, explanatory behavior and the additional flexibility of defining the error function and the regularization constraints. In this contribution we present the use of GAdC for prediction of algae distributions. We highlight one of the advantages of this method namely, the use of scalars to obtain the sequence in which the prediction of algae distributions should be calculated. Using this sequence leads to an improvement of the prediction.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种用于多元回归系统监督训练的混合方法。所提出的方法依赖于遗传算法和局部学习的监督聚类。遗传算法驱动聚类(GAdC)在鲁棒性、泛化性能、特征选择、解释行为以及定义误差函数和正则化约束的额外灵活性方面具有一定的优势。在这篇文章中,我们介绍了GAdC用于预测藻类分布的应用。我们强调了这种方法的优点之一,即使用标量来获得应该计算藻类分布预测的序列。使用这个序列可以改进预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalars, a way to improve the multi-objective prediction of the GAdC-method
This paper describes a hybrid method for supervised training of multivariate regression systems. The proposed methodology relies on supervised clustering with genetic algorithms and local learning. Genetic algorithm driven clustering (GAdC) offers certain advantages related to robustness, generalization performance, feature selection, explanatory behavior and the additional flexibility of defining the error function and the regularization constraints. In this contribution we present the use of GAdC for prediction of algae distributions. We highlight one of the advantages of this method namely, the use of scalars to obtain the sequence in which the prediction of algae distributions should be calculated. Using this sequence leads to an improvement of the prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信