音素混合密度hmm的分段LVQ3训练

M. Kurimo
{"title":"音素混合密度hmm的分段LVQ3训练","authors":"M. Kurimo","doi":"10.5281/ZENODO.36307","DOIUrl":null,"url":null,"abstract":"This work presents training methods and recognition experiments for phoneme-wise tied mixture densities in hidden Markov models (HMM). The system trains speaker dependent, but vocabulary independent, phoneme models for the recognition of Finnish words. The Learning Vector Quantization (LVQ) methods are applied to increase the discrimination between the phoneme models. A segmental LVQ3 training is proposed to substitute the LVQ2 based corrective tuning as a parameter estimation method. The experiments indicate that the new method can provide the corresponding recognition accuracy, but with less training and more robustness over the initial models. Experiments to upscale the current system by introducing context vectors and larger mixture pools show up to 40 % reduction of recognition errors compared to the earlier results in [10].","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"55 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Segmental LVQ3 training for phoneme-wise tied mixture density HMMS\",\"authors\":\"M. Kurimo\",\"doi\":\"10.5281/ZENODO.36307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents training methods and recognition experiments for phoneme-wise tied mixture densities in hidden Markov models (HMM). The system trains speaker dependent, but vocabulary independent, phoneme models for the recognition of Finnish words. The Learning Vector Quantization (LVQ) methods are applied to increase the discrimination between the phoneme models. A segmental LVQ3 training is proposed to substitute the LVQ2 based corrective tuning as a parameter estimation method. The experiments indicate that the new method can provide the corresponding recognition accuracy, but with less training and more robustness over the initial models. Experiments to upscale the current system by introducing context vectors and larger mixture pools show up to 40 % reduction of recognition errors compared to the earlier results in [10].\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"55 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

这项工作提出了隐马尔可夫模型(HMM)中音素混合密度的训练方法和识别实验。该系统训练的音素模型依赖于说话者,但独立于词汇,用于识别芬兰语单词。采用学习向量量化(LVQ)方法提高音素模型之间的识别能力。提出了一种分段LVQ3训练方法来代替基于LVQ2的校正调谐作为参数估计方法。实验表明,新方法可以提供相应的识别精度,但训练量更少,鲁棒性更强。通过引入上下文向量和更大的混合池对当前系统进行升级的实验表明,与[10]中较早的结果相比,识别误差减少了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmental LVQ3 training for phoneme-wise tied mixture density HMMS
This work presents training methods and recognition experiments for phoneme-wise tied mixture densities in hidden Markov models (HMM). The system trains speaker dependent, but vocabulary independent, phoneme models for the recognition of Finnish words. The Learning Vector Quantization (LVQ) methods are applied to increase the discrimination between the phoneme models. A segmental LVQ3 training is proposed to substitute the LVQ2 based corrective tuning as a parameter estimation method. The experiments indicate that the new method can provide the corresponding recognition accuracy, but with less training and more robustness over the initial models. Experiments to upscale the current system by introducing context vectors and larger mixture pools show up to 40 % reduction of recognition errors compared to the earlier results in [10].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信